Моментная характеристика двигателя постоянного тока. Основные характеристики двигателя постоянного тока

Коэффициент полезного действия двигателя

Преобразование электрической энергии в механическую при работе ДПТ сопровождается потерями энергии. Отношение полезной механической мощности Р 2 на валу двигателя к потребляемой из сети электрической мощности Р 1 определяет коэффициент полезного действия (КПД) двигателей

η = ∙ 100% = ∙ 100%

Полезная механическая мощность Р 2 , снимаемая с вала двигателя, рассчитывается по формуле

Р 2 = 0,105 М n , Вт (6.9)

где М = М С – момент сопротивления на валу двигателя, Нм;

n – частота вращения вала двигателя, об/мин.

Так как двигатель обладает «саморегулированием», то вращающий момент, развиваемый двигателем, …
равен моменту сопротивления на его валу, т.е. М ВР = М С = М, поэтому, зная полезную мощность двигателя, можно определить его вращающий момент по выражению

М = 9,55 , Нм (6.10)

Потребляемая двигателем мощность Р 1 определяется по формуле

Р 1 = U∙I = U∙ (I я + I в) , Вт (6.11)

где U – напряжение питания двигателя.

I = I я + I в — ток, потребляемый из сети двигателем с параллельным возбуждением.

ΔР = ΔР э +ΔР ст + ΔР мех — сумма всех потерь двигателя постоянного тока, Вт.

где ΔР э – электрические потери;

ΔР ст – потери в стали статора и якоря;

ΔР мех – механические потери.

Электрические потери ΔР э являются переменными, так как зависят от нагрузки и их значения может быть представлено как

ΔР э = ΔР я +ΔР в + ΔР щ

где ΔР я = I я 2 R я – потери в обмотке якоря (при номинальном режиме составляют 50% всех потерь);

ΔР в = I в 2 R в – потери в обмотке возбуждения;

ΔР щ = I я 2 ΔU щ – потери на коллекторно-щеточном контакте;

ΔU щ – падение напряжения между щеткой и коллектором (зависит от материала щеток: ΔU щ = 2 В для графитовых и 0,6 В для металлографитовых щеток.)

Потери в стали ΔР ст связаны с вихревыми токами и перемагничивании якоря при его вращении и составляет 1 – 3% от номинальной мощности двигателя.

Механические потери ΔР мех связаны с трением движущихся частей двигателя и составляют 1 -2 % от номинальной мощности двигателя. Эти потери, как и потери в стали, являются постоянными и не зависят от нагрузки двигателя. Их называют потерями холостого хода.

При работе ДПТ вхолостую Р 2 = 0 и η = 0 при увеличении полезной мощности Р 2 КПД растет. Двигатели рассчитывают так, чтобы максимальное значение КПД соответствовало номинальной мощности двигателя (при этом постоянные потери равны переменным). При нагрузке больше номинальной КПД уменьшается за счет значительного роста переменных потерь. Для машин мощностью 1 – 100 кВт номинальное значение КПД лежит в пределах 74 – 92 %.

Основными характеристика ДПТ, получаемыми теоретически или экспериментально, являются его механическая характеристика, а также рабочая и регулировочная характеристики.

Механической характеристикой двигателя называется зависимость частоты вращения якоря nот момента М на валу двигателя: n = f(М). Уравнением механической характеристики является выражение (6.7).

Механическая характеристика двигателя с параллельным возбуждением представляет собой прямую с незначительным наклоном по мере роста момента на валу (рис.6.7). Такая характеристика называется «жесткой».

Рис. 6.7. Механическая характеристика ДПТ с параллельным возбуждением.

Жесткость механической характеристики объясняется тем, что при параллельном включении обмотки возбуждения, с ростом момента нагрузки, ток возбуждения I в, а следовательно, и магнитный поток двигателя Ф остаются неизменными, а сопротивление якоря R я сравнительно мало.

Рабочие характеристики ДПТ представляют собой зависимости частоты вращения n, момента М, тока якоря I я и КПД η от полезной мощности Р 2 на валу двигателя при неизменном напряжении на его зажимах U = const.Рабочие характеристики ДПТ с параллельным возбуждением представлены на рис. 6.8.

Зависимость полезного момента на валу двигателя от нагрузки Р 2 представляет собой почти прямую линию, так как момент этого двигателя пропорционален нагрузке на валу: М = 9,55 Р 2 /n. Искривление указанной зависимости объясняется некоторым снижением частоты вращения с увеличением нагрузки. При Р 2 = 0 ток, потребляемый электродвигателем равен току холостого хода. При увеличении мощности, развиваемой электродвигателем, ток якоря увеличивается приблизительно по той же зависимости, что и момент нагрузки на валу, так как при условии Ф = const токе якоря пропорционален моменту нагрузки.

Рис. 6.8. Рабочие характеристики ДПТ с параллельным возбуждением.

В соответствии с тремя вышеуказанными способами регулирования частоты вращения двигателя, его регулировочными характеристиками являются зависимости: n = f(R я), n = f(I в), и n = f(U),

где R я – сопротивление якорной цепи, равное сумме сопротивлений самого якоря и реостата регулирования тока возбуждения;

I в – ток возбуждения, вызывающий пропорциональный ему магнитный поток возбуждения Ф;

U – напряжение, подаваемое на обмотку якоря, при соблюдении условия Ф = const, т.е. I в = const.

Примерный вид регулировочных характеристик, получаемых из выражения (6.7) при условии М = const, представлен на рис. 6.9.

Рис. 6.9. Регулировочные характеристики ДПТ с параллельным возбуждением: а) n = f(R я), б) n = f(I в) с) n = f(U).

1.ПОСТОЯННЫЙ ТОК…………………………………………………………..1

1.1. Простейшая цепь постоянного тока…………….………………………..1

1.2. Баланс мощностей в простейшей цепи постоянного тока………………..7

1.3. Последовательное соединение сопротивлений……………………………9

1.4. Параллельное соединения сопротивлений……………………………….10

1.5. Смешанное соединение сопротивлений……………………………….….12

1.6. Холостой ход и короткое замыкание ……………………………………13

1.7. Расчет сложных электрических цепей постоянного тока………………14

1.7.1. Метод непосредственного применения законов Кирхгофа………….14

1.7.2. Метод контурных токов…………………………………………………..17

2. ОДНОФАЗНЫЙ ПЕРЕМЕННЫЙ ТОК……………………………………18

2.1. Получение однофазного переменного тока……………………………..18

2.2. Цепь переменного тока с активным сопротивлением…………………..20

2.3 Цепь переменного тока с индуктивным сопротивлением……………….23

2.4. Цепь переменного тока с ёмкостным сопротивлением…………………25

2.5. Цепь переменного тока с последовательным

соединением активного, индуктивного и ёмкостного сопротивлений

(последовательная R-L-C цепь)……………………………………………….28

2.6. Резонанс напряжений……………………………………………………..31

2.7. Цепь переменного тока с параллельным соединением

активного, индуктивного и ёмкостного сопротивлений

(параллельная R-L-C цепь)……………………………………………….……34

2.8. Понятие эквивалентной проводимости………………………………….36

2.9. Резонанс токов……………………………………………………………..37

3. ТРЕХФАЗНЫЙ ПЕРЕМЕННЫЙ ТОК…………………………………….39

3.1. Трехфазный ток и его получение…………………………………………39

3.2. Соединение звездой. Четырехпроводная система трехфазного………41

3.3 Соединение звездой. Трехпроводная система трехфазного тока………46

3.4. Соединение по схеме «треугольник»…………………………………….48

3.5. Мощность трехфазной системы……………………………………………50

3.6. Измерения мощности потребляемой

трехфазными электроприемниками…………………………………..………..50

4. ТРАНСФОРМАТОРЫ………………………………………………………. 53

4.1. Назначение, области применения и классификация трансформаторов..53

4.2. Устройство и принцип работы однофазного

двухобмоточного трансформатора……………………………………………..54

4.3. Холостой ход трансформатора……………………………………………..56

4.4. Схема замещения трансформатора в режиме холостого хода.…………..60

4.5. Приведение вторичной обмотки трансформатора………………………..60

4.6. Схема замещения трансформатора в рабочем режиме……………………62

4.7. Векторная диаграмма рабочего режима трансформатора………………..63

4.8. Коэффициент полезного действия трансформатора………………………65

4.9. Экспериментальное определение параметров трансформаторов……….66

4.9.1. Опыт холостого хода……………………………………………………..67

4.9.2.. Опыт короткого замыкания……………………………………………..69

4.10 Нагрузочные характеристики трансформатора…………………………..71

5. АИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ… ………………………………72

5.1. Принцип действия и области применения асинхронных двигателей….72

5.2. Получение вращающегося магнитного поля……………………………..73

5.3. Конструкция асинхронных двигателей……………………………………77

5.4. Скольжение………………………………………………………………….78

5.5. Магнитные потоки и ЭДС асинхронного двигателя…………………….79

5.6. Основные уравнения асинхронного двигателя……………………….…..80

5.7. Приведение параметров обмотки ротора к обмотке статора…………….81

5.8. Векторная диаграмма асинхронного двигателя…………………………..82

5.9. Схема замещения асинхронного двигателя………………………………82

5.10. Потери мощности и КПД асинхронного двигателя……………..…….83

5.11. Уравнение вращающего момента………………………………….…….85

5.12. Механические характеристики асинхронного двигателя………………85

5.13. Рабочие характеристики асинхронного двигателя………………………88

5.14. Пуск, регулирование частоты вращения и торможение

асинхронного двигателя……………………………..…………………………88

6. ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА…………………………90

6.1. Назначение, устройство и способы возбуждения

двигателей постоянного тока……………………………………………..…….90

6.2. Принцип действия двигателя постоянного тока

и его основные уравнения………………………………………………………92

6.3. Пуск и реверсирование двигателя постоянного тока…………………….94

6.4. Регулирование скорости вращения двигателя……………………………96

6.5. Коэффициент полезного действия двигателя…………………………….98

6.6. Основные характеристики двигателя постоянного тока…………………99

Классификация двигателей. Свойства двигателей постоянного тока как генераторов в основном определяются способом питания обмотки возбуждения. В связи с этим различают двигатели с параллельным, независимым, последовательным и смешанным возбуждением. Схемы включения двигателей отличаются от схем включения соответствующих генераторов только наличием пускового реостата, который вводится для ограничения тока при пуске.

Обратимость электрической машины. Машина постоянного тока с независимым или параллельным возбуждением, подключенная к сети с постоянным напряжением, может работать как в генераторном, так и в двигательном режиме и переходить из одного режима работы в другой.

Для контура «обмотка якоря - сеть», согласно второму закону Кирхгофа,

E - U =Σ,

Откуда

I а = (E - U )/ΣR а .

Если Е > U , то ток I а совпадает по направлению с ЭДС Е , и машина работает в генераторном режиме (рис. 8.58, а). При этом электромагнитный момент М противоположен направлению вращения п, т. е. является тормозным. Уравнение (8.79) для генераторного режима имеет вид

U = E - Iа Σ.

Если Е < U , то ток I а в уравнении (8.79) изменяет знак и направлен против ЭДС Е . В соответствии с этим изменяет знак и электромагнитный момент М , т. е. он действует по направлению вращения n . При этом машина работает в двигательном режиме (рис. 8.58,б) и уравнение (8.79) принимает вид

U = E + Iа Σ,

Если за положительное направление тока I а для двигательного режима принять его направление, встречное с ЭДС Е .

Таким образом, генераторы с независимым и параллельным возбуждением, подключенные к сети с напряжением U , автоматически переходят в двигательный режим, если их ЭДС Е меньше напряжения сети U . Эти двигатели автоматически переходят в генераторный режим, когда их ЭДС Е больше U . (8.83) (8.84)

При работе машины постоянного тока в двигательном режиме ЭДС Е и вращающий момент М определяются теми же формулами, что и в генераторном режиме:

Двигатель с параллельным возбуждением. В этом двигателе (рис. 8.59, а) обмотка возбуждения подключена параллельно с обмоткой якоря к сети. В цепь обмотки возбуждения включен регулировочный реостат Rр.в ., а в цепь якоря - пусковой реостат R п . Характерной особенностью двигателя является то, что его ток возбуждения I в не зависит от тока якоря I а (тока нагрузки), так как питание обмотки возбуждения по существу независимое. Следовательно, пренебрегая размагничивающим действием реакции якоря, можно приближенно считать, что и поток двигателя не зависит от нагрузки. При этом условии согласно (8.84) и (8.85) получаем, что зависимости М = f(Ia ) и n = f(Ia ) (моментная и скоростная характеристики) линейные (рис. 8.59,б). Следовательно, линейна и механическая характеристика двигателя n = f(M) (рис. 8.60, а).

Если в цепь якоря включен добавочный резистор или реостат R п , то

п = [U - R а + R п )]/(се Ф) = п 0 - Δn ,

где n 0 = U /(с е Ф) - частота вращения при холостом ходе; Δп = (ΣRа + R п )Iа /(се Ф) - снижение частоты, обусловленное суммарным падением напряжения во всех сопротивлениях, включенных в цепь якоря двигателя.

Величина Δп , зависящая от суммы сопротивлений ΣR а + R п , определяет наклон скоростной n = f(Ia ) и механической n = f(M) характеристик к оси абсцисс. При отсутствии в цепи якоря добавочного сопротивления R п указанные характеристики жесткие (естественные характеристики 1 на рис. 8.59,б и 8.60,а ), так как падение напряжения Iа ΣRа в обмотках машины, включенных в цепь якоря, при номинальной нагрузке составляет лишь 3 - 5% от U ном . При включении добавочного реостата угол наклона этих характеристик возрастает, вследствие чего образуется семейство реостатных характеристик 2, 3, 4 , соответствующих различным сопротивлениям реостата R пl . R п2 и R п3 . Чем больше сопротивление R п , тем больший угол наклона имеет реостатная характеристика, т. е. тем она мягче.

Реакция якоря, уменьшая несколько поток машины Ф при нагрузке, стремится придать естественной механической характеристике отрицательный угол наклона, при котором частота вращения n возрастает с увеличением момента М . Однако двигатель с такой характеристикой в большинстве электроприводов устойчиво работать не может. Поэтому современные двигатели большой и средней мощностей с параллельным возбуждением часто имеют небольшую последовательную обмотку возбуждения, которая придает механической характеристике необходимый наклон. МДС этой обмотки при токе I ном составляет около 10% от МДС параллельной обмотки.

Регулировочный реостат R p.в позволяет изменять ток возбуждения двигателя I в и его магнитный поток Ф. Как следует из (8.86), при этом изменяется и частота вращения n . В цепь обмотки возбуждения выключатели и предохранители не устанавливают, так как при разрыве этой цепи и небольшой нагрузке на валу частота вращения двигателя резко возрастает (двигатель идет в «разнос»). При этом сильно увеличивается ток якоря и может возникнуть круговой огонь.

Рабочие характеристики рассматриваемого двигателя (рис. 8.60,б) представляют собой зависимости потребляемой мощности Р 1 тока Ia ≈ Iн частоты вращения n , момента М и КПД η от отдаваемой мощности Р 2 на валу двигателя при U = const и I в = const. Характеристики n = f(P2 ) и М = f(P2 ) являются линейными, а зависимости Р1 = f(P2 ), Ia = f(P2 ) и η = f(P2 ) имеют характер, общий для всех электрических машин. Иногда рабочие характеристики строят в зависимости от тока якоря I a .

Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя. Механические и рабочие характеристики двигателя с независимым возбуждением аналогичны характеристикам двигателя с параллельным возбуждением, так как у них ток возбуждения I в также не зависит от тока якоря I a .

Двигатель с последовательным возбуждением. В этом двигателе (рис. 8.61, а) ток возбуждения Iв = Ia , поэтому магнитный поток Ф является некоторой функцией тока якоря I a . Характер этой функции изменяется в зависимости от нагрузки двигателя. При I a Iном, когда магнитная система машины не насыщена, Ф = kф Ia , причем коэффициент пропорциональности в значительном диапазоне нагрузок остается практически постоянным. При дальнейшем возрастании тока якоря поток Ф возрастает медленнее, чем I > Iном ) можно считать, что Ф ≈ const. В соответствии с этим изменяются в зависимости n = f(Ia ) и М = f(Ia ) .

При Ia ном скоростная характеристика двигателя n = f(Ia ) (рис. 8.61, б ) имеет форму гиперболы, так как частота вращения

n = U - Ia ∑Ra = U - Ia ∑Ra = C1 U - C2 .
ce Ф ce kф Ia ce kф Ia Ia

Где С1 и С2 - постоянные.

При I a > I ном скоростная характеристика становится линейной, так как частота вращения

n = U - Ia ∑Ra = U - Ia ∑Ra = C"1 U - C"2 Ia
ce Ф ce Ф ce Ф

Где С "1 и С "2 - постоянные.

Аналогично можно получить зависимость электромагнитного момента от тока якоря М = f(Ia ) . При Ia ном моментная характеристика М = f(Ia ) имеет форму параболы. (рис. 8.61,б), так как электромагнитный момент

М = сМ ФÍ a = сМ k ф 2= C 3 2 ,

Где С 3 - постоянная.

При I a > I ном моментная характеристика линейная, так как

М = сМ ФIa = C" 3 ,

Где C"3 - постоянная. Механические характеристики n = f(М) (рис. 8.62, а ) можно построить на основании зависимостей n = f(Ia ) и М = f(Ia ) . При Ia ном частота вращения изменяется по закону

n = U - Ra = C4 U - C2 ,
ce kф √M /(cм kф ) ce kф √M

Где С4 - постоянная.

При I a > I ном зависимость n = f(М) становится линейной.

Включая в цепь якоря пусковые реостаты с сопротивлениями R п1 , R п2 и R п3 кроме естественной характеристики 1 можно получить семейство реостатных характеристик 2, 3 и 4 , причем, чем больше R п , тем ниже располагается характеристика.

Рабочие характеристики двигателя с последовательным возбуждением приведены на рис. 8.62, б . Зависимости n = f(Р2 ) М = f(Р2 ) являются нелинейными; зависимости P1 = f(Р2 ), Iа = f(Р2 ) и η = f(Р2 ) имеют примерно такой же характер, как и у двигателя с параллельным возбуждением.

Из рассмотрения рис. 8.62, а следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются мягкими и имеют гиперболический характер. При малых нагрузках частота вращения и резко возрастает и может превысить максимально допустимое значение (двигатель идет в «разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода или при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2 ÷ 0,25) I ном ; только двигатели малой мощности (десятки ватт) используют для работы в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты для включения недопустимо.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Это объясняется тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением. При жесткой характеристике частота вращения п почти не зависит от момента М , поэтому мощность

Р 2 = М ω = 2π/60 = С 5 М ,

Где С5 - постоянная.

При мягкой характеристике двигателя с последовательным возбуждением частота вращения и обратно пропорциональна √М , вследствие чего

Р 2 = М ω = 2π/60 = С" 5 √М ,

Где С5 - постоянная.

Поэтому при изменении нагрузочного момента в широких пределах мощность Р2 , а следовательно, мощность Р1 и ток у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением; кроме того, они лучше переносят перегрузки. Например, при заданной кратности перегрузки по моменту М/М ном = k м ток якоря в двигателе с параллельным возбуждением увеличивается в k м раз, а в двигателе с последовательным возбуждением - только в √k м раз. Поэтому двигатель с последовательным возбуждением развивает больший пусковой момент, так как при заданной кратности пускового тока I п /I ном = k i пусковой момент его М п = ki 2 М ном , а у двигателя с параллельным возбуждением М п = ki М ном .

Указанные преимущества двигателей с последовательным возбуждением наиболее четко проявляются в простых приводах, не имеющих систем автоматического управления. При наличии таких систем предпочтение всегда отдается двига¬телям с параллельным или независимым возбуждением, у. которых с помощью регуляторов тока возбуждения можно получить требуемую форму механической характеристики, например гиперболическую.

Двигатель со смешанным возбуждением. В этом двигателе (рис. 8.63, а) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения - параллельной и последовательной. Поэтому его механические характеристики (рис. 8.63,б , кривые 3 и 4) располагаются между характеристиками двигателей с параллельным (прямая 1 ) и последовательным (кривая 2 ) возбуждением. В зависимости от соотношения МДС параллельной и последовательной обмоток при

номинальном режиме можно приблизить характеристики двигателя со смешанным возбуждением к характеристике 1 (при малой МДС последовательной обмотки) или к характеристике 2 (при малой МДС параллельной обмотки). Одним из достоинств двигателя со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, так как его частота вращения n0 имеет конечное значение.

Министерство образования и науки Российской Федерации

ГОУ ВПО Южно-Уральский государственный университет

Филиал в г. Златоусте

Двигатели постоянного тока

ЗД-431.583.270102

Выполнил: Шарипова Ю.Р.

Группа: ЗД-431

Проверил: Румянцев.Е.

1. Введение

2. Устройство и принцип действия двигателей постоянного тока

3. Пуск двигателей

4. Технические данные двигателей

5. Кпд двигателей постоянного тока

6 Характеристики двигателя постоянного тока

6.1 Рабочие характеристики

7. Список используемой литературы


1.Введение

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.


2. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных - обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.

Рис.1

На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:

(1) (2)

где К М - коэффициент, зависящий от конструктивных параметров машины; Ф - магнитный поток одного полюса; I Я - ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:

(3)

где r Я - сопротивление якоря.

Следствием уменьшения тока I Я является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.


3. Пуск двигателей

Из формулы (3) следует, что в первое мгновение после включения двигателя в сеть постоянного напряжения, т.е. когда

и ,

Так как сопротивление r Я невелико, то ток якоря может в 10…30 раз превышать номинальный ток двигателя, что недопустимо, поскольку приведет к сильному искрению и разрушению коллектора. Кроме того, при таком токе возникает недопустимо большой момент двигателя, а при частых пусках возможен перегрев обмотки якоря.

Чтобы уменьшить пусковой ток в цепи якоря, включают пусковой резистор, сопротивление которого по мере увеличения частоты вращения двигателя уменьшают до нуля. Если пуск двигателя автоматизирован, то пусковой резистор выполняют из нескольких ступеней, которые выключают последовательно по мере увеличения частоты вращения.

Пусковой ток якоря

По мере разгона двигателя в обмотке якоря возрастает ЭДС, а как следует из формулы (3), это приводит к уменьшению тока якоря I Я. Поэтому по мере увеличения частоты вращения двигателя сопротивление в цепи якоря уменьшают. Чтобы при сравнительно небольшом пусковом токе получить большой пусковой момент, пуск двигателя осуществляют с наибольшим магнитным потоком. Следовательно, ток возбуждения при пуске должен быть максимально допустимым, т.е. номинальным.


4.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение U и, мощность P н, частота вращения n н, ток I н, КПД.

Под номинальным U н понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток I н – максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:

где I ян - ток якоря при номинальной нагрузке; I вн – ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения I вн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают

Номинальная мощность Р н - это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения n н.

Частота вращения n н, и КПД соответствуют работе двигателя с током I н, напряжением U н без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P 2 , момент М и частота вращения n связаны соотношением:

Потребляемая двигателем из сети мощность Р 1 , величины P 2, КПД, U, I связаны соотношениями:

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.


5. КПД двигателей постоянного тока

Коэффициент полезного действия является важнейшим показателем двигателей постоянного тока. Чем он больше, тем меньше мощность Р и ток I, потребляемые двигателем из сети при одной и той же механической мощности. В общем виде зависимостьть

такова: (9)

где

6.Характеристики двигателей постоянного тока

6.1. Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f(Iв) при Ia=const и U=const.

До тех пор, пока сталь магнитопривода машины не насыщена, поток Ф изменяется пропорционально току возбуждения Iв. В этом случае регулировочная характеристика является гиперболической. По мере насыщения при больших токах Iв характеристика приближается к линейной (рис. 2). При малых значениях тока Iв скорость вращения резко возрастает. Поэтому при обрыве цепи возбуждения двигателя (Iв = 0) с параллельным возбуждением скорость его вращения достигает недопустимых пределов, как говорят: «Двигатель идет вразнос». Исключение могут составлять микродвигатели, которые имеют относительно большой момент М0 холостого хода.

Рис. 2. Регулировочная характеристика двигателя

В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f(P2), при U=const и rв = const.

Рис. 3. Скоростные характеристики

С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая - увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f(P2), при U=const, rв=const.

Полезный момент на валу двигателя

Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).


Рис. 4. Моментные характеристики

В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до 1/4 номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Рис. 5. Изменение к. п. д. двигателя


6.2 Механическая характеристика

Важнейшей характеристикой двигателя является механическая n(M). Она показывает, как зависит частота вращения двигателя от развиваемого момента. Если к обмоткам двигателя подведены номинальные напряжения и отсутствуют дополнительные резисторы в его цепях, то двигатель имеет механическую характеристику, называемую естественной. На естественной характеристике находится точка, соответствующая номинальным данным двигателя (М н, Р я и т.д.). Если же напряжение на обмотке якоря меньше номинального, либо I в < I вн, то двигатель будет иметь различные искусственные механические характеристики. На этих характеристиках двигатель работает при пуске, торможении, реверсе и регулировании частоты вращения.

Преобразовав выражение (3) относительно частоты вращения, получим уравнение электромеханической характеристики n(I я):

(7)

После замены в уравнении (7) тока I я согласно формуле (1), получим уравнение механической характеристики n(М):

(8)

При Ф = соnst, электромеханическая n(I я) и механическая n(М) характеристики двигателя параллельного возбуждения представляют собой прямые линии. Так как за счет реакции якоря магнитный поток немного изменяется, то характеристики в действительности несколько отличаются от прямых.

При работе вхолостую (М = 0) двигатель имеет частоту вращения холостого хода, определяемую первым членом уравнения (8). С увеличением нагрузки n уменьшается. Как следует из уравнения (8), это объясняется наличием сопротивления якоря r я.

Поскольку r я не велико, частота вращения двигателя при увеличении момента изменяется мало, и двигатель имеет жесткую естественную механическую характеристику (рис.6, характеристика 1).

Из уравнения (8) следует, что регулировать частоту вращения при заданной постоянной нагрузке (М = const) можно тремя способами:

а) изменением сопротивления цепи якоря;

б) изменением магнитного потока двигателя;

в) изменением напряжения на зажимах якоря.

Рис. 6 Механические характеристики

Для регулирования частоты вращения первым способом в цепь якоря. должно быть включено добавочное сопротивление r д. Тогда сопротивление в уравнении (8) необходимо заменить на r я + r д.

Как следует из уравнения (8), частота вращения n связана с сопротивлением цепи якоря r я + r д при постоянной нагрузке (М = const) линейной зависимостью, т.е. при увеличении сопротивления частота вращения уменьшается. Разным сопротивлениям r д соответствуют различные искусственные механические характеристики, одна из которых приведена на рис.2 (характеристика 2). С помощью характеристики 2 при заданном моменте М1 можно получить частоту вращения n2.

Изменение частоты вращения вторым способом осуществляется с помощью регулируемого источника напряжения UD2. Изменяя его напряжение регулятором R2, можно изменить ток возбуждения I В и тем самым магнитный поток двигателя. Как видно из уравнения (8), при постоянной нагрузке (М = соnst) частота вращения находится в сложной зависимости от магнитного потока Ф. Анализ уравнения (8) показывает, что в некотором диапазоне изменения магнитного потока Ф уменьшение последнего приводит к увеличению частоты вращения. Именно этот диапазон изменения потока используют при регулировании частоты вращения.

Каждому значению магнитного потока соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2 (характеристика 4). С помощью характеристики 4 при моменте М1 можно получить частоту вращения n4.

Чтобы регулировать частоту вращения изменением напряжения на зажимах якоря, необходимо иметь относительно мощный регулируемый источник напряжения. Каждому значению напряжения соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2 (характеристика 3). С помощью характеристики 3 при заданном моменте М1 можно получить частоту вращения n3.


Список используемой литературы

1. Кацман М.М. Электрические машины. -М.: Высш. шк., 1993.

2. Копылов И.П. Электрические машины. -М.: Энергоатомиздат, 1986

Эксплутационные свойства двигателей определяются его рабочими характеристиками, наибольший интерес из которых представляют зависимости частоты вращения n и вращающего момента М от полезной мощности на валу двигателя, т.е. .

Рассмотрим для различных двигателей. Частота вращения якоря равна

На рис.4.20,а представлена зависимость для (1). Падающий характер обусловлен преобладанием падения напряжения в цепи обмотки якоря над размагничивающим действием реакции якоря, иначе зависимость будет иметь возрастающий характер (2), что недопустимо с точки зрения устойчивой работы двигателя. Поэтому для обеспечения падающего характера применяют легкую последовательную обмотку, называемую стабилизирующей. Эта обмотка включается таким образом, чтобы компенсировать размагничивающее действие реакции якоря.


Для магнитный поток зависит от тока нагрузки, так как . С учетом этого частота вращения якоря будет равна

где , k – коэффициент пропорциональности. Анализ зависимости для двигателя последовательного возбуждения (3) показывает, что при малых нагрузках (менее 20 % от номинальной) резко увеличивается частота вращения n и может достигнуть опасных значений. Поэтому работа двигателей в режиме холостого хода недопустима.

Для зависимость определяется соотношением МДС параллельной и последовательной обмоток. При сильной параллельной обмотке возбуждения зависимость (4) будет ближе к характеристике (1), при сильной последовательной обмотке возбуждения – ближе к характеристике (3). В общем случае зависимость (4) располагается между характеристиками (1) и (3).

Анализ зависимости для различных двигателей. Для этого используем выражение для момента .

На рис.4.20,б представлена зависимость для двигателя параллельного возбуждения (1). При была бы линейной. Однако с увеличением нагрузки частота вращения двигателя снижается, и поэтому зависимость - нелинейная, где – момент холостого хода. Для двигателя последовательного возбуждения значение электромагнитного момента можно определить по формуле

На рис.4.20,б приведена зависимость для двигателя последовательного возбуждения (2). При больших нагрузках двигателя наступает насыщение магнитной системы, магнитный поток практически не меняется и характеристика становится линейной.

Для двигателя смешанного возбуждения (3) зависимость будет располагаться между (1) и (2).

Конец работы -

Эта тема принадлежит разделу:

Синхронный генератор является основным типом генератора переменного тока, применяемым в процессе производства электроэнергии рис.3.1

Синхронной электрической машиной называется машина переменного тока в которой частота вращения ротора n равна частоте вращения магнитного потока... Синхронный генератор является основным типом генератора переменного тока... Синхронные двигатели в отличие от асинхронных двигателей имеют строго постоянную частоту вращения не зависящую от...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Устройство и принцип действия синхронной машины
По своей конструкции синхронные машины подразделяются на явнополюсные и неявнополюсные (рис.3.2). Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины и назы

Магнитное поле обмотки возбуждения синхронной машины
Явнополюсная машина. На рис. 3.3,а изображено магнитное поле обмотки возбуждения в воздушном зазоре явнополюсной синхронной машины на протяжении полюсного деления t. Распределение

Магнитное поле и параметры обмотки якоря
При наличии тока в обмотке якоря синхронной машины возникает магнитное поле, действие которого на магнитное поле обмотки возбуждения называется реакцией якоря. Индуктор (ро

Продольная и поперечная реакции якоря
Рассмотрим действие реакции якоря синхронного генератора при установившейся симметричной нагрузке (рис.3.5 – 3.7). Обмотка якоря изображена в виде упрощенной трехфазной обмотки, как

Магнитные поля и ЭДС продольной и поперечной реакции якоря
Продольная и поперечная составляющие тока якоря создают продольную и поперечную составляющие МДС якоря с соответствующими амплитудами:

Векторные диаграммы напряжений синхронных генераторов
Явнополюсная машина. Уравнение напряжения синхронного явнополюсного генератора имеет вид:

Характеристики синхронного генератора
Рабочие свойства синхронного генератора оценивают его характеристиками, важнейшими из которых являются: характеристики холостого хода, трехфазного короткого замыкания, внешние, регулировочные, инду

Отношение короткого замыкания
Рис. 3.16 Отношением короткого замыкания ОКЗ

Диаграмма Потье
Этой диаграммой пользуются у неявнополюсных синхронных машин при определении тока возбуждения, необходимого для обеспечения заданного режима работы (

Порядок построения диаграммы Потье
1. Строится характеристика холостого хода (1); 2. По оси ординат откладывают вектор номинального напряжения

Условия включения генератора на параллельную работу
Необходимо выполнить следующие требования: 1. ЭДС включаемого генератора EГ должна быть равна напряжению сети Uc; 2. Частота генератора f

Изменение реактивной мощности. Режим синхронного компенсатора.
В случае, если выполнены все условия включения генератора на параллельную работу, ток якоря равен нулю, машина работает на холостом ходу. Если ток возбуждения генератора после синхронизации увеличе

Изменение активной мощности. Режим генератора и двигателя.
Чтобы включенная на параллельную работу машина вырабатывала активную мощность, работала в режиме генератора, необходимо увеличить механический вращающий момент на валу (рис.3.23,в). При этом возник

Синхронизирующая мощность (синхронизирующий момент) и статическая перегружаемость синхронных машин
Выше установлено, что в определенных пределах значений угла нагрузки синхронная машина способна сохранять

Работа синхронной машины при постоянной активной мощности и переменном возбуждении
Рассмотрим зависимость тока якоря I от тока возбуждения при

Элементы теории переходных процессов синхронных машин
При резких изменениях режима работы синхронной машины (подключение и отключение нагрузки, замыкание и размыкание электрических цепей обмоток, короткое замыкание и т.д.) возникают разнообразные пере

Гашение магнитного поля
При внутренних коротких замыканиях, в обмотке якоря синхронного генератора (рис.3.28), ток возбуждения про

Физическая картина явлений при внезапном трехфазном коротком замыкании синхронного генератора
Процесс внезапного короткого замыкания обмотки якоря в главнейших чертах аналогичен короткому замыканию в любой цепи переменного тока, например, внезапному короткому замыканию вторичной обмотки тра

Синхронные двигатели
В сравнении с асинхронными двигателями они имеют большие преимущества: 1. Могут работать с и не п

Синхронный компенсатор
Синхронные компенсаторы предназначены для повышения коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являетс

Исследование характеристик трехфазного синхронного генератора
Проводятся экспериментальные исследования синхронного генератора для получения и анализа следующих характеристик: холостого хода, нагрузочной, внешней, регулировочной, короткого замыкания.

Определение параметров трехфазного синхронного генератора
Проводится экспериментальное определение индуктивных сопротивлений синхронного генератора Xd, Xq, X2, X0. Сравниваются со значениями, полученными

Исследование синхронного реактивного двигателя
Проводятся опыты холостого хода и получения рабочих характеристик, анализируются результаты исследований. КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОРАТОРНОЙ РАБОТЫ &

Параллельная работа синхронного генератора с мощной сетью
Проводится включение синхронного генератора (СГ) на параллельную работу, снимаются зависимость тока якоря от активной нагрузки генератора, U-образные характеристики при различных значениях полезной

Устройство простейшей машины постоянного тока и принцип ее действия
На рис. 4.1 представлена простейшая машина постоянного тока. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индук

Якорные обмотки машин постоянного тока
В современных машинах постоянного тока якорная обмотка укладывается в пазах на внешней поверхности якоря. Такие обмотки называются барабанными. Обмотки якорей подразделяются на петлевые

Петлевые обмотки
Простая петлевая обмотка. На рис.4.3, а и б представлены секции простой петлевой обмотки. Результирующий шаг простой петлевой обмотки равен

Волновые обмотки.
Простая волновая обмотка.На рис. 4.5,а и б представлены секции простой волновой обмотки. Результирующий шаг простой волновой обмотки равен

Магнитная цепь машины постоянного тока при холостом ходе
При проектировании машины постоянного тока возникает необходимость определения зависимости основного магнитного потока

Магнитное поле машины при нагрузке
При нагрузке машины () обмотка якоря создает собственное магнитное поле. Поля якоря и индуктора, действующ

Коммутация
Процесс изменения тока в секции при переключении ее из одной параллельной ветви в другую называется коммутацией и может сопровождаться искрением на коллекторе. Причины, вызывающие искрение, подразд

Физическая сущность коммутации
Секция, в которой происходит коммутация, называется коммутирующей секцией, а время, в течение которого происходит процесс коммутации, называется периодом коммутации. На рис. 4.10,а,б,

Способы улучшения коммутации
На основе анализа формулы для определения добавочного тока возможны следующие пути улучшения коммутации: 1. Применение добавочных полюсов для создания коммутирующей ЭДС

ЭДС якоря
Среднее значение ЭДС, индуктируемой в одном проводнике обмотки якоря, равно, где

Электромагнитный момент
Электромагнитная сила, действующая на проводник с током в магнитном поле, равна,

Характеристика холостого хода
Для генератора постоянного тока с независимым возбуждением характеристика

Внешняя характеристика
Внешняя характеристика для генератора независимого возбуждения (1) предст

Регулировочная характеристика
Регулировочная характеристика для генератора независимого возбуждения (1) представлена на

Нагрузочная характеристика
Нагрузочная характеристика генератора независимого возбуждения (2) представлена на рис.4.

Характеристика короткого замыкания
Напряжение на клеммах обмотки якоря генератора равно

Параллельная работа генераторов постоянного тока
Параллельная работа генераторов обусловлена необходимостью бесперебойного питания потребителей, недостаточной мощностью одного генератора и т.д. Условия включения на параллельную работу:

Двигатели постоянного тока
Электрические машины обладают свойством обратимости, т.е. они могут работать как в режиме генератора, так и в режиме двигателя. По способу возбуждения двигатели постоянного тока подразделя

Пуск двигателей постоянного тока
Возможны три способа пуска двигателя: 1. Прямой пуск; 2. Пуск при пониженном напряжении; 3. Пуск с помощью пускового реостата, включаемого

Регулирование частоты вращения и устойчивость работы двигателя
Возможны три способа регулирования частоты вращения: 1. Изменением потока возбуждения.

Торможение двигателей постоянного тока
При необходимости быстрой остановки или уменьшения частоты вращения осуществляют торможения двигателя. Торможение с использованием электромагнитного момента электрической машины называется электрич

Исследования генератора постоянного тока независимого возбуждения
Проводятся экспериментальные исследования для получения и анализа следующих характеристик: холостого хода, нагрузочной, внешней, регулировочной, короткого замыкания. КОНТРО

Исследование генератора постоянного тока параллельного возбуждения
Проводятся экспериментальные исследования для получения и анализа следующих характеристик: холостого хода, нагрузочной, внешней, регулировочной. КОНТРОЛЬНЫЕ ВОПРОСЫ ПР

Исследование двигателя постоянного тока параллельного возбуждения

Исследование двигателя постоянного тока последовательного возбуждения
Проводятся экспериментальные исследования для получения и анализа рабочих, механических, скоростных, регулировочных характеристик. КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОР

Рабочие характеристики ДПТ параллельного возбуждения малой мощности приведены на рис. 5.8.

Рабочие характеристики двигателя представляют собой зависимости скорости вращения n, потребляемого тока I и мощности P 1 , момента на валу двигателя M, коэффициента полезного действия η от полезной мощности P 2 при неизменном значении напряжения питания U н = const, тока обмотки возбуждения I вн =const и отсутствии добавочного сопротивления в якорной цепи R д я = 0. Они дают возможность судить об эксплуатационных свойствах двигателей и определять наиболее экономичные их режимы работы в условиях производства.

Механическая характеристика двигателя постоянного тока

Механическими характеристиками двигателя называются зависимости установившейся частоты вращения от момента на валу двигателя – n=f 1 (M) или ω=f 2 (M).

Характеристики называют естественными, если они получены при номинальных условиях питания (при номинальном напряжении), номинальном возбуждении и отсутствии добавочных сопротивлений в цепи якоря.

Характеристики двигателя называются искусственными при изменении любого из перечисленных выше факторов.

Подставим в уравнение

,выражения для определения тока и ЭДС ДПТ

Е я = С Е nФ,


Механическая характеристика двигателя постоянного тока с независимым и параллельным возбуждением имеет вид:


,

где R яц = R я + R доб – полное сопротивление цепи якоря, Ом;

R Я – сопротивление обмотки якоря, Ом;

R доб – добавочное сопротивление в цепи якоря, Ом.

Анализируя выражение для построения механической характеристики, видим, что математически это уравнения прямой линии, пересекающей ось скоростей в точке n 0 , где

n 0 = U/(

·Ф) – скорость холостого хода.

Естественная механическая характеристика показана на рис. 5.9.

Для построения естественной механической характеристики (ЕМХ) необходимо найти две точки.

Одна из них определяется из паспортных данных двигателя для номинальных значений n н и М н:

М н = P н /ω н, ω н = π·n н /30 = 0,105·n н,

где P н – номинальная мощность двигателя, Вт;

ω н – номинальная частота вращения, рад/сек.

Вторая точка соответствует идеальному холостому ходу, когда I = 0 и М=0.

Скорость холостого хода можно найти из следующего уравнения при подстановке паспортных данных двигателя:


.

Регулирование скорости вращения дпт

Существует три основных способа регулирования частоты вращения машин постоянного тока: реостатное регулирование, регулирование изменением магнитного потока, регулирование изменением напряжения сети.

Реостатное регулирование частоты вращения осуществляется путем введения в цепь якоря дополнительных активных сопротивлений – резисторов, т.е. R яц = (R я + R доб) = var при U = U н, Ф = Ф н. Как видно из уравнения механической характеристики

при изменении величины добавочного сопротивления R доб в цепи якоря скорость идеального холостого хода n 0 остается постоянной изменяется лишь жесткость характеристики.

Искусственные механические характеристики (ИМХ) при введении добавочного сопротивления в цепь ротора двигателя постоянного тока независимого возбуждения показаны на рис. 5.10.

Регулирование частоты вращения при изменении магнитного потока осуществляется преимущественно за счет ослабления магнитного потока Ф возбуждения двигателя, т.е. за счет уменьшения тока возбуждения i в.

При уменьшении магнитного потока обычно соблюдаются условия: U = U н; R дя = 0. В этом случае для скорости идеального холостого хода имеем


, тогда

,

где

- скорость холостого хода для искусственной механической характеристики;


- скорость холостого хода для естественной механической характеристики.

Искусственные механические характеристики при уменьшении магнитного потока представлены на рис. 5.11.

Для регулирования частоты вращения двигателя постоянного токанезависимого возбуждения изменением питающего напряжения необходимы регулируемые источники напряжения.

Из уравнения механической характеристики видно, что с регулированием напряжения связано изменение скорости идеального холостого хода n 0 = U н /(

·Ф н) при сохранении жесткости характеристик. Это позволяет существенно расширить диапазон регулирования. Регулирование частоты вращения идет, как правило, вниз от основной характеристики.Искусственные характеристики при изменении (уменьшении) напряжения будут иметь вид прямых. Механические характеристики двигателя постоянного тока независимого возбуждения при изменении напряжения питания показаны на рис. 5. 12.