Настройка пид регулятора с внутренним релейным контуром. Принцип работы

Для определения оптимальных параметров настройки регуляторов (параметрической оптимизации) АСР необходимо иметь сведения о статических и динамических характеристиках объекта регулирования и действующих возмущений. Наиболее достоверными являются экспериментально определенные статические характеристики.

Оптимальная настройка ПИД-регулятора позволяет максимально быстро и почти без перерегулирования вывести объект на уставку. Признак правильной настройки – плавный, без рывков, рост регулируемого параметра и наличие тормозящих импульсов при подходе к уставке как снизу, так и сверху (рис. 14.39).

Если объект выходит на уставку с небольшим перерегулированием и быстрозатухающими колебаниями, можно немного уменьшить коэффициент усиления, оставив все остальные параметры без изменения.

Величина максимума амплитудно-частотной характе­ристики замкнутой системы регулирования, а также ее резонансная частота могут быть определены из временной характеристики системы относительно управляющего воздействия по условной величине ее степени затухания и частоте(рис. 14.40).


Рис. 14.39. Оптимальная работа ПИД-регулятора


Рис. 14.40. Переходная характеристика замкнутой системы регулирования

Указанное обстоятельство позволяет приближенно определить параметры регулируемого объекта ипо полученной экспериментально кривой переходного процесса при ступенчатом воздействии со стороны задатчика регулятора. Действительно, если известны сте­пень затухания переходного процесса и его частота, а также числовые значения параметров настройки ре­гулятора, при которых регистрировался этот процесс, то принципиально не представляет труда определить, каковы должны быть числовые значения параметров объектаидля то­го, чтобы амплитудно-фа­зовая характеристика разомкнутой системы с из­вестными параметрами настройки регулятора ка­салась окружности с ин­дексом, соответствующим этой степени затухания при частоте, соответству­ющей частоте переходного процесса.

Порядок определения оптимальной настройки ПИ-регулятора по графику временной характеристики за­мкнутой системы регулирования с помощью графиков заключается в следующем:

1. Система регулирования при произвольной настройке регулятора включается в работу. Убедившись, чтоона работает устойчиво, быстро изменяют задание регулятору на некоторую достаточно большую, но допустимую по условиям эксплуатации величину и регистрируют процесс изменения регулируемой величины во времени.

2. Из полученного графика изменения регулируемой величины, типовой вид которого приведен на рис. 14.40, определяются степень затухания и период колебаний переходного процессаТ.

3. Вычислив величину отношения периода колебаний переходного процесса к установленному в регуляторе во время проведения эксперимента значению времени изодрома, находят величины поправочных множителей на величину коэффициента пере­дачи регулятора и на величину его времени изодрома, т.е. определяют, во сколько раз следует изменить чи­словые значения параметров настройки регулятора, чтобы настройка оказалась близкой к оптималь­ной.

4. Установив найденные параметры настройки в ре­гуляторе, опыт повторяют и производят повторный рас­чет, аналогичный изложенному выше. Если окажется, что числовые значения поправочных коэффициентов близки к единице (находятся в пределах 0,95–1,05), можно считать, что настройка окончена. В противном случае необходимо произвести повторную перена­стройку.

В практике наладочных работ используют приближенные формулы для определения оптимальных параметров настройки регуляторов для объектов, описываемых нижеприведенными выражениями при различных критериях оптимальности.

1. Всесоюзным теплотехническим институтом имени Ф.Э. Дзер­жинского (ВТИ) рекомендуются для степени затухания за период  = 0,75 и интегральной квадратичной оценки, близкой к минимуму, следующие формулы расчета для параметров ПИ-регу­лятора с передаточной функцией:

W (P ) =K p (Т из Р + 1)/Т из Р .

При 0 <  об /Т а < 0,2

, Т из = 3,3 об.

При 0,2 <  об /Т а < 1,5

, Т из = 0,8Т а .

При = 0,9, 0 < об /Т а < 0,1

, Т из = 5 об.

При 0,1 <  об /Т а < 0,64

, Т из = 0,5Т а .

2. Имеются номограммы для подобных объектов, чтобы в зависимости от параметров объекта и заданного затухания определитьK р ,Т из (метод Ротача).

3. Существует метод компенсации большой постоянной времени объекта (Т из = Т об ) при коэффициенте демпфирования = 707 (модульный оптимум).

4. Аналитический расчет границы устойчивости и параметров регулятора при заданной степени колебательности по расширенным частотным характери­стикам (метод Стефани) также применяется при наличии ЭВМ и соответствую­щих методик расчета. Все методики дают близкие результаты расчета параметров регулятора и, соответственно, близкие переходные процессы.

5. На практике расчеты регуляторов заканчиваются наладочными работами, когда используются экспериментальные методы параметрической оптимизации .

Эти методы основаны на прямом контроле переходных или частотных характеристик в процессе подбора оптимальных параметров настройки или с па­раметрами, заведомо обеспечивающими устойчивое движение АСР. Затем, вводя возмущение, наблюдают реакцию системы на эти возмущения. Целена­правленно изменяя параметры настройки регулятора, добиваются нужного ха­рактера переходного процесса. Это многошаговая итерационная процедура. Данные методы разработаны настолько, что позволяют автоматизировать этот процесс при минимальном участии человека 3 .

Самая простая настройка, когда в замкнутой АСР с ПИ-регу­ля­тором (при ПИ-регуляторе Т из устанавливают очень большим) увеличиваютK p до границы устойчивости, определяютK p .кр и Т пер.кр период установившихся ко­лебаний. Затем выставляют параметры:

Для П-регулятора K p .опт = 0,55 K p .кр;

Для ПИ-регулятора K p .опт = 0,55K p .кр,Т из = 1,25Т пер.кр.

6. Лучшие результаты дает пошаговая оптимизация с оценкой переходной характеристики на каждом шаге.

В плоскости параметров настройки ПИ-регулятора существуют линии одинаковой степени затухания (рис. 14.41).

Одно и то же затухание (пусть ψ= 0,75) можно получить при различных параметрах регулятора. Нужно обеспечить при этом минимальную квадратичную ошибку, которая изменяется в плоскости как показано на рис. 14.42. Таким образом, надо искать оптимальную точку настройки.


Из кривых (рис. 14.43) для различных настроек можно видеть, что в точках 1 и 2 переходные процессы затянуты, в точке 4 имеется апериодическая составляющая, затягивающая процесс. Поиск оптимальной настройки состоит из следующих этапов (рис. 14.44, 14.45):

1. ЗавышаютТ из, занижаютK р (точка 1).

2. Увеличивают K р , чтобы при колебательном процессе ψ = 0,8–0,9 (точка 2 ).



Рис. 14.44. Этапы практической настройки параметров ПИ-регулятора

3. УменьшаютТ из, чтобы избавиться от апериодической составляющей (точки3 ,4 ).

4. УменьшаютK р , чтобы приψ= 0,95…1 и при различных вариациях динамических свойств объекта регулирования переходные процессы были слабоколебательными (точка5 ).

Данный метод оптимизации не требует точного определения параметров объекта и параметров регулятора, так как варьирование параметров настройки производят относительно исходных значений, поэтому он широко применяется.


Рис. 14.45. Характер переходных процессов при различных настройках параметроврегуляторов

К примеру, в инструкции для наладчика САР с цифровым ПИ-регулятором даны следующие рекомендации.

    регулятор настроен на ПИ-регулирование;


Рис. 14.46. Переходный процесс выходного сигнала ПИ-регулятора

    структурная схема управления приведена на рис. 14.47;


Рис. 14.47. Структурная схема управления объектом с пневматическим исполнительным механизмом:w – задающее воздействие;x – регулируемая величина;xd – отклонение регулируемой величины;y – управляющее воздействие;1 – измерительный преобразователь; 2 – задатчик величины; 3 – регулировочный усилитель; 4 – электропневматический преобразователь сигнала; 5 – датчик; 6 – пневматический исполнительный блок

– пропорциональный коэффициент K р = 0,1;

– время изодрома T n = 9984 с;

– время предварения T v =oFF ;

– настройка параметров ПИ-регулятора:

установить желаемую заданную величину и в ручном режиме установить рассогласование регулирования на ноль;

переключиться на автоматический режим;

медленно увеличивать K р , пока регулирующий контур через малые изменения заданной величины не начнет клониться к колебаниям;

незначительно уменьшать K р , пока колебания не будут устранены;

уменьшать T n до тех пор, пока регулирующий контур снова не начнет клониться к колебаниям;

медленно увеличивать T n до тех пор, пока уклон к колебаниям не будет устранен.

Билет №16

    насосы - машины, подающие жидкости;

    вентиляторы и компрессоры - машины, подающие воздух и технические газы.

Вентилятор - машина, перемещающая газовую среду при степени повышения давления Ер < 1,15 (степень повышения давления Ер - отношение давления газовой среды на выходе из машины к давлению ее на входе).

Компрессор - машина, сжимающая газ с Ер >1,15 и имеющая искусственное (обычно водяное) охлаждение полостей, в которых происходит сжатие газов.

Согласно ГОСТ 17398-72 нагнетатели (насосы) подразделяются на две основные группы: насосы динамические и объем­ные.

    В динамических нагнетателях передача энергии жидкости или газу происходит путем работы массовых сил потока в полости, постоянно соединенной с входом и выходом нагнетателя.

    В объемных нагнетателях повышение энергии рабочего тела (жидкости или газа) достигается силовым воздействием твердых тел, например поршней в поршневых машинах в рабочем пространстве цилиндра, периодически соединяемым при помощи клапанов с входом и выходом нагнетателя.

1. Перевести регулятор в ручной режим, дождаться пока стабилизируется процесс и произвести однократное изменение выходного сигнала (выхода на клапан) X, которое обеспечит приемлемый отклик переменной технологического процесса Y (рисунок.1).
2. После получения отклика вернуться к исходному значению выходного параметра сигнала регулятора. Переменная технологического процесса также должна вернуться к исходному значению. Если различие значительно, повторите попытку отклика.
3. Определить коэффициент усиления процесса (Kp=Y/X), время запаздывания d, и временную константу Т усреднением значений верхнего и нижнего откликов.
4. Рассчитать коэффициенты настройки ПИД регулятора по формулам представленным в таблице 1.
5. Для более устойчивой работы регулятора возможно необходимо будет увеличить временную константу замкнутого контура (E).

Рисунок 1. Отклик процесса на ступенчатое воздействие.



Таблица 1. Формулы вычисления коэффициентов для ПИД регуляторов

Где: Х – значение изменения выходного воздействия (в %);
Y – значение изменения переменной процесса (в % от шкалы);
Kp – коэффициент усиления процесса;
d – время запаздывания реакции процесса (в минутах);
Т – временная константа процесса (в минутах);
E – заданная временная константа замкнутого контура (минуты). Минимально возможное время в течении которого настраиваемый регулятор может привести значение переменной процесса к заданию.

Kp=Y/X
E=T+d

Для более устойчивой работы регулятора значение E нужно увеличить.
При настройке каскадных регуляторов, сначала настраивается ведомый регулятор, затем ведущий регулятор. Причем, временная константа E ведущего регулятора должна быть больше временной константы E ведомого регулятора минимум в 5 раз.

Настройка ПИД регулятора по методу максимального коэффициента усиления (Метод №2).

1. Переключите регулятор в ручной режим работы, когда процесс достаточно стабилен и на установке не ожидается резких отклонений от заданного режима. Установите Td (постоянную дифференцирования регулятора) и K (пропорциональный коэффициент регулятора) в значение равное нулю, а Ti (постоянную интегрирования регулятора) на максимальное значение.
2. Запомните исходное положение клапана на тот случай, если вам потребуется вернуться к нему в процессе настройки. Переключите регулятор в автоматический режим.
3. Постепенно увеличивайте значение пропорционального коэффициента до тех пор, пока не начнутся колебания. Нужно добиться, чтобы колебания были с постоянной амплитудой. Если колебания будут с возрастающей амплитудой, то пропорциональный коэффициент нужно уменьшить. При сильной раскачке необходимо перевести регулятор в ручной режим, выставить запомненное ране в пункте 2 значение выхода на клапан, уменьшить пропорциональный коэффициент и повторить попытку. Когда получатся равномерные колебания, замерьте период колебания tc (время отработки одного полного цикла)(см. рисунок 2). Получившийся пропорциональный коэффициент будет максимальным для данной системы регулирования (Kmax).
4. По полученным tc и Kmax, рассчитать коэффициенты настройки ПИД регулятора по формулам представленным в таблице 2.

Рисунок 2. Определение периода колебаний



Таблица 2.Формулы вычисления коэффициентов для ПИД регуляторов

Общие правила для настройки регуляторов:
Регулятор не будет нормально работать, если клапан почти полностью закрыт или почти полностью открыт.
Настраивать регулятор нужно в той зоне шкалы, предположительно в которой ему предстоит работать.
Не следует использовать воздействие дифференциальной составляющей для регуляторов расхода.
Не следует использовать малые значения интегральной составляющей в регуляторах уровня.
Не следует использовать воздействие дифференциальной составляющей в регуляторах уровня.
После настройки регулятора, необходимо проверить его устойчивость, сменив значение задания на значительную величину. Если будет наблюдаться раскачка, то необходимо уменьшит коэффициент усиления.
Следует помнить о том, что безопасными для устойчивости регулятора, являются большие значения Ti и малые значения Td.
При зашумленных результатах измерений использование дифференциальной составляющей, как правило, невозможно. Ни в коем случае не устанавливайте дифференциальную составляющую, которая превышает интегральную.
При настройке каскадных регуляторов время интегрирования ведущего регулятора должно быть в 4 раза больше чем время интегрирования ведомого регулятора.
Примечание: После настройки регулятора по методу 1 или методу 2, для более точной работы регулятора можно подстроить его коэффициенты опираясь на рисунок 3.


Рисунок 3. Графики для уточнения настройки регулятора.

С дополнительными материалами по настройке ПИД регуляторов Вы можете ознакомиться .

Узнать больше про регуляторы и алгоритмы работы регуляторов Вы можете .

Для закрепления полученных знаний предлагаем Вам воспользоваться программой имитации контуров регулирования

Регуляторы процесса (Process Controllers) – это параметрируемые цифровые контроллеры со встроенным набором стандартных функций для регулирования технологических переменных (температуры, давления и т.п.).

В качестве сигналов задания (Reference) могут использоваться как фиксированные уставки (Fixed Setpoints), так и внешние (External).

Аналоговые входы используются для подключения датчиков обратной связи (термометров сопротивления, термопар, манометров и т.п.).

Дискретные входы используются для задания фиксированных уставок и переключения между режимами.

Дискретные выходы используются для сигнализации: готовности, аварий, состояния.

Релейные выходы используются для дискретного управления, а аналоговые выходы – для непрерывного управления.

Дискретное управление

  • 2-х позиционный регулятор использует только 2 состояния:
    • включено (открыто)
    • выключено (закрыто)
    • Пример: управление нагреванием или охлаждением.
  • 3-х позиционный регулятор использует 3 состояния:
    • выключено
    • вращение по часовой стрелке
    • вращение против часовой стрелки (реверс)
    • Пример: управление реверсивным электродвигателем.
  • 5-и позиционный регулятор использует 5 состояний:
    • выключено
    • вращение на первой скорости по часовой стрелке
    • вращение на второй скорости по часовой стрелке
    • вращение на первой скорости против часовой стрелки
    • вращение на второй скорости против часовой стрелки
    • Пример: управление 2-скоростным реверсивным двигателем.

Непрерывное управление

Для непрерывного управления используются ПИД-регуляторы. Возможна реализация каскадного (подчинённого) управления.

Замкнутая система управления

Переходный процесс

Переходный процесс – это реакция системы на внешнее воздействие (задание, возмущение).

Неустойчивый (расходящийся) переходный процесс

Устойчивый (сходящийся) переходный процесс

ПИД-регулятор

С помощью настройки ПИД-регулятора (PID-controller) мы можем скорректировать переходный процесс так, как нам нужно для решения своей задачи.



Х зад – заданное (желаемое) значение выходной переменной
X max – верхний допустимый предел выходной переменной
X min – нижний допустимый предел выходной переменной
Т – период колебаний
Т н – время нарастания
Т р – время переходного процесса (последняя точка пересечения кривой с X min или X max)
А 1 – первое перерегулирование
А 2 – второе перерегулирование
d=А 1 /A 2 - степень (декремент) затухания переходного процесса (отношение первого перерегулирования ко второму)

Рассогласование, перерегулирование, время нарастания, время переходного процесса, степень затухания характеризуют качество регулирования .

Пример

ПИД-регулятор открывает и закрывает регулирующий вентиль на горячей трубе так, чтобы из крана текла вода с температурой +40°С с погрешностью плюс-минус 2 градуса. Регулятор вычисляет рассогласование (ошибку) - отклонение реальной температуры (например, +20°С) от заданного значения (+40°С) и решает – когда и насколько необходимо приоткрыть горячий вентиль, чтобы температура повысилась на 20С. Реальную (фактическую) температуру регулятор узнаёт с помощью датчика температуры (обратная связь), а заданную температуру (уставку) ему сообщает оператор, например, набирая число «40» на своём ПК.

Чтобы настроить ПИД-регулятор, необходимо подобрать правильную комбинацию трёх коэффициентов:

  • Пропорционального – K p
  • Интегрального – K i
  • Дифференциального – K d

Могут использоваться и более простые - П и ПИ-регуляторы.

Формула ПИД-регулятора

где e(t) - ошибка (рассогласование), u(t) - выходной сигнал регулятора (управляющее воздействие).

Чем больше П ропорциональный коэффициент, тем выше быстродействие, но меньше запас устойчивости. Но! простой П-регулятор не может полностью отработать рассогласование, т.е. всегда работает с ошибкой.

ПИ-регулятор позволяет избавиться от статической (установившейся) ошибки, но, чем больше И нтегральный коэффициент, тем больше перерегулирование (динамическая ошибка).

ПИД-регулятор позволяет нам уменьшить перерегулирование, но, чем больше Д ифференциальный коэффициент, тем больше погрешность из-за влияния шумов.

Если шумы идут по каналу обратной связи, то мы можем их отфильтровать с помощью фильтра низкой частоты, но чем больше постоянная этого фильтра, тем медленнее регулятор будет отрабатывать возмущения.

Настройка ПИД-регулятора по методу Циглера-Николса

Циглер и Николс предложили свой вариант быстрой настройки ПИД-регулятора для периодического переходного процесса, в котором затухание примерно равно 4.

  • Обнуляем K i и K d
  • Постепенно увеличиваем Kp до критического значения K c , при котором возникают автоколебания
  • Измеряем период автоколебаний Т
  • Вычисляем значения K p , K i и K d по разным формулам для разных регуляторов:
    • для П-регулятора: K p =0,50*K c
    • для ПИ-регулятора: K p =0,45*K c , K i =1,2*K p /T
    • для ПИД-регулятора: K p =0,60*K c , K i =2,0*K p /T, K d =K p *T/8

Каскадный регулятор (подчинённое управление)

Продолжение примера

Теперь нам захотелось добавить комфорта и сделать так, чтобы уставка задания температуры воды менялась в зависимости от температуры воздуха на улице (на улице мороз – вода горячая, на улице жара – вода прохладная). Можно установить ещё один регулятор комфортной температуры, который по показаниям термометра узнаёт фактическую температура наружного воздуха и решает, что комфортная температура воды должна быть, например, +40°С, поэтому он выдаёт задание регулятору температуры воды – поддерживать температуру на уровне +40С (см. пример выше). Здесь мы имеем каскадное регулирование: контур регулирования температуры воды подчинён контуру регулирования комфортной температуры воды.

С помощью регуляторов процесса мы можем реализовать и более сложные связи. Например, поддерживать постоянный расход и температуру воды, независимо от давления и температуры горячего и холодного трубопроводов.

Упреждающее регулирование (Feedforward Control)

Не всегда простой ПИД-регулятор в системе с обратной связью может обеспечить требуемое быстродействие из-за возникновения нежелательных колебаний или недопустимо большого перерегулирования. Для улучшения характеристик регулирования применяют комбинированное управление – с обратной связью (closed-loop) и без обратной связи (open-loop). К управляющему воздействию (выходу регулятора) добавляется сигнал упреждающего воздействия, который не зависит от рассогласования, а значит, не может вызвать автоколебания в системе.

Продолжение примера

Если мы доверяем прогнозу погоды, то вместо каскадного управления мы можем реализовать упреждающее регулирование без измерения уличной температуры: читаем прогноз на завтра, задаём уставку +40°С по таймеру времени на завтра на 7 утра.

Если измерить возмущение , то можно подать упреждающее воздействие, которое компенсирует влияние этого возмущения на процесс до того, как начнёт изменяться регулируемый параметр.

В данной статье приведены основные принципы и правила настройки коэффициентов ПИД-регулятора сточки зрения практического применения. Теоретические основы можно прочитать .

Для простоты изложения рассмотрим настройку регулятора на примере. Допустим, необходимо поддерживать температуру в помещении с помощью обогревателя, управляемого регулятором. Для измерения текущей температуры используем термопару.

Задача настройки

Настройка регулятора производится с одной единственной целью: подобрать его коэффициенты для данной задачи таким образом, чтобы регулятор поддерживал величину физического параметра на заданном уровне. В нашем примере физическая величина — это температура.

Допустим текущая температура в помещении 10 °С, а мы хотим, чтобы было 25°С. Мы включаем регулятор и он начинает управлять мощностью обогревателя таким образом, чтобы температура достигла требуемого уровня. Посмотрим как это может выглядеть.

На данном рисунке красным цветом показана идеальная кривая изменения температуры в помещении при работе регулятора. Физическая величина плавно, без скачков, но в тоже время достаточно быстро подходит к заданному значению. Оптимальное время, за которое температура может достигнуть заданной отметки, определить довольно сложно. Оно зависит от многих параметров: размеров комнаты, мощности обогревателя и др. В теории это время можно рассчитать, но на практике чаще всего это определяется экспериментально.

Чёрным цветом показан график изменения температуры в том случае, если коэффициенты подобраны совсем плохо. Система теряет устойчивость. Регулятор при этом идёт «в разнос» и температура «уходит» от заданного значения.

Рассмотрим более благоприятные случаи.


На этом рисунке показаны графики, далёкие от идеального. В первом случае наблюдается сильное перерегулирование: температура слишком долго «скачет» относительно уставки, прежде чем достичь её. Во втором случае регулирование происходит плавно, но слишком медленно.

А вот и приемлемые кривые:


Данные кривые тоже не идеальны, но могут быть сочтены за удовлетворительные.

В процессе настройки регулятора, пользователю необходимо стремиться получить кривую, близкую к идеальной. Однако, в реальных условиях сделать это не так-то просто — приходится долго и мучительно подбирать коэффициенты. Поэтому зачастую останавливаются на «приемлемой» кривой регулирования. Например, в нашем примере нас могли бы устроить коэффициенты регулятора, при которых заданная температура достигалась бы за 15-20 минут с максимальным перерегулированием (максимальными «скачками» температуры) 2 °С. А вот время достижение уставки более часа и максимальные «скачки» температуры 5 °С — нас бы не устроили.

Настраиваем пропорциональный коэффициент

Выставляем дифференциальный и интегральный коэффициенты в ноль, тем самым убирая соответствующие составляющие. Пропорциональный коэффициент выставляем в 1.

Далее нужно задать значение уставки температуры отличное от текущей и посмотреть, как регулятор будет менять мощность обогревателя, чтобы достичь заданного значения. Характер изменения можно отследить «визуально», если у вас получится мысленно представить этот график. Либо можно регистрировать в таблицу измеренное значение температуры каждые 5-10 секунд и по полученным значением построить график. Затем нужно проанализировать полученную зависимость в соответствии с рисунком:


При большом перерегулировании, необходимо уменьшать пропорциональный коэффициент, а если регулятор долго достигает уставки — увеличивать. Так убавляя-прибавляя коэффициент необходимо получить график регулирования как можно ближе к идеальному. Поскольку достичь идеала удастся вряд ли, лучше оставить небольшое перерегулирование (его можно будет скорректировать другими коэффициентами), чем длительное нарастание графика.

Настраиваем дифференциальный коэффициент

Постепенно увеличивая дифференциальную составляющую, необходимо добиться уменьшения или полного исчезновения «скачков» графика (перерегулирования) перед выходом на уставку. При этом кривая должна стать еще больше похожа на идеальную. Если слишком сильно завысить дифференциальный коэффициент, температура при выходе на уставку будет расти не плавно, а скачками (как показано на рисунке).


При появлении таких скачков необходимо прекратить увеличение дифференциального коэффициента.

Настраиваем интегральный коэффициент

При настройке двух предыдущих коэффициентов можно получить практически идеальную кривую регулирования или близкую к ней кривую, удовлетворяющую условиям задачи. Однако, как правило возникает так называемая «статическая ошибка». При этом в нашем примере температура стабилизируется не на заданном значении 25 °С, а на несколько меньшем значении. Дело в том, что если температура станет равной уставке (то есть разность текущей и заданной температур станет равна 0), то пропорциональная и дифференциальная составляющая будут равны нулю (). При этом мощность регулятора тоже станет равна 0 и он начнёт остывать.


Для того чтобы исключить этот эффект, используют интегральную составляющую. Её необходимо постепенно увеличивать до исчезновение статической ошибки. Однако, чрезмерное её увеличение тоже может привести к возникновению скачков температуры.

Заключение

Настройка ПИД-регулятора довольно сложный и трудоёмкий процесс. На практике достаточно тяжело достичь оптимального регулирования и зачастую в этом нет необходимости. Чаще всего достаточно добиться такого вида переходного процесса, который устроит пользователя в условиях текущей задачи.

Перед тем, как рассчитывать параметры регулятора, необходимо сформулировать цель и критерии качества регулирования, а также ограничения на величины и скорости изменения переменных в системе. Традиционно основные качественные показатели формулируются исходя из требований к форме реакции замкнутой системы на ступенчатое изменение уставки. Однако такой критерий очень ограничен. В частности, он ничего не говорит о величине ослабления шумов измерений или влияния внешних возмущений, может дать ошибочное представление о робастности системы.

Поэтому для полного описания или тестирования системы с ПИД-регулятором нужен ряд дополнительных показателей качества, о которых речь пойдет ниже.

В общем случае выбор показателей качества не может быть формализован полностью и должен осуществляться исходя из смысла решаемой задачи.

5.5.1. Качество регулирования

Выбор критерия качества регулирования зависит от цели, для которой используется регулятор. Такой целью может быть:

  • поддержание постоянного значения параметра (например, температуры);
  • слежение за изменением уставки или программное управление;
  • управление демпфером в резервуаре с жидкостью и т.д.

Для той или иной задачи наиболее важными могут быть следующие факторы:

  • форма отклика на внешнее возмущение (время установления, перерегулирование, коэффициент затухания и др.);
  • форма отклика на шумы измерений;
  • форма отклика на сигнал уставки;
  • робастность по отношению к разбросу параметров объекта управления;
  • требования к экономии энергии в управляемой системе;
  • минимум шумов измерений и др.

Для классического ПИД-регулятора параметры, которые являются наилучшими для слежения за уставкой, в общем случае отличаются от параметров, наилучших для ослабления влияния внешних возмущений. Для того, чтобы оба параметра одновременно были оптимальными, необходимо использовать ПИД-регуляторы с двумя степенями свободы (см. раздел "Принцип разомкнутого управления").

Например, точное слежение за изменением уставки необходимо в системах управления движением, в робототехнике. В системах управления технологическими процессами, где уставка обычно остается длительное время без изменений, требуется максимальное ослабление влияния нагрузки (внешних возмущений). В системах управления резервуарами с жидкостью требуется обеспечение ламинарности потока (минимизация дисперсии выходной переменной регулятора).

Ослабление влияния внешних возмущений

Как было показано в разделе "Запас устойчивости и робастность" , обратная связь ослабляет влияние внешних возмущений в раз за исключением тех частот, на которых . Внешние возмущения могут быть приложены к объекту в самых разных его частях, однако, когда конкретное место неизвестно, считают, что возмущение воздействует на вход объекта. В этом случае отклик системы на внешние возмущения определяется передаточной функцией (см. (5.42))

Таким образом, для ослабления влияния внешних возмущений (в частности, влияния нагрузки) можно уменьшить постоянную интегрирований .

Во временной области реакцию на внешние возмущения оценивают по отклику на единичный скачок (см. рис. 5.56).

Ослабление влияния шумов измерений

Передаточная функция от точки приложения шума (рис. 5.35) на выход системы имеет вид (см. (5.42)):

.

Благодаря спаду АЧХ объекта на высоких частотах функция чувствительности стремится к 1 (см. рис. 5.81). Поэтому ослабить влияние шумов измерений с помощью обратной связи невозможно. Однако эти шумы легко устраняются применением фильтров нижних частот, а также правильным экранированием и заземлением [Денисенко , Денисенко ].

Робастность к вариации параметров объекта

Замкнутая система остается устойчивой при изменении параметров объекта на величину , если выполняется условие (5.100).

Критерии качества во временной области

Для оценки качества регулирования в замкнутой системе с ПИД-регулятором обычно используют ступенчатое входное воздействие и ряд критериев для описания формы переходного процесса (рис. 5.84):

Для систем управления движением в качестве тестового сигнала чаще используют не функцию скачка, а линейно нарастающий сигнал, поскольку электромеханические системы обычно имеют ограниченную скорость нарастания выходной величины.

Приведенные выше критерии используются как для оценки качества реакции на изменение уставки, так и на воздействие внешних возмущений и шумов измерений.

Частотные критерии качества

В частотной области обычно используются следующие критерии, получаемые из графика амплитудно-частотной характеристики замкнутой системы (см. рис. 5.85):

Частотные критерии у реальных регуляторов не могут быть однозначно связаны с временными критериями из-за нелинейностей (обычно это нелинейности типа ограничений) и алгоритмов устранения эффекта интегрального насыщения. Однако приближенно можно установить следующие зависимости между критериями в частотной и временной области:

5.5.2. Выбор параметров регулятора

В общей теории автоматического управления структура регулятора выбирается исходя из модели объекта управления. При этом более сложным объектам управления соответствуют более сложные регуляторы. В нашем же случае структура регулятора уже задана - мы рассматриваем ПИД-регулятор, причем эта структура очень простая. Поэтому ПИД-регулятор не всегда может дать хорошее качество регулирования, хотя в подавляющем большинстве приложений в промышленности применяются именно ПИД-регуляторы.

Впервые методику расчета параметров ПИД-регуляторы предложили Зиглер и Никольс в 1942 году [Ziegler ]. Эта методика очень проста и дает не очень хорошие результаты. Тем не менее, она до сих пор часто используется на практике, хотя с тех пор появилось множество более точных методов.

После расчета параметров регулятора обычно требуется его ручная подстройка для улучшения качества регулирования. Для этого используется ряд правил, хорошо обоснованных теоретически.

Для настройки ПИД-регуляторов можно использовать и общие методы теории автоматического управления, такие, как метод назначения полюсов и алгебраические методы. В литературе опубликовано и множество других методов, которые имеют преимущества в конкретных применениях. Мы приводим ниже только самые распространенные из них.

Метод CHR использует аппроксимацию объекта моделью первого порядка с задержкой (5.5).

Табл. 28. Формулы для расчета коэффициентов регулятора по методу CHR, по отклику на изменение уставки

Без перерегулирования

С 20%-ным перерегулированием

Регулятор