Решать онлайн деление. Деление столбиком на двузначное число

Математический-Калькулятор-Онлайн v.1.0

Калькулятор выполняет следующие операции: сложение, вычитание, умножение, деление, работа с десятичными, извлечение корня, возведение в степень, вычисление процентов и др. операции.


Решение:

Как работать с математическим калькулятором

Клавиша Обозначение Пояснение
5 цифры 0-9 Арабские цифры. Ввод натуральных целых чисел, нуля. Для получения отрицательного целого числа необходимо нажать клавишу +/-
. точка (запятая) Разделитель для обозначения десятичной дроби. При отсутствии цифры перед точкой (запятой) калькулятор автоматически подставит ноль перед точкой. Например: .5 - будет записано 0.5
+ знак плюс Сложение чисел (целые, десятичные дроби)
- знак минус Вычитание чисел (целые, десятичные дроби)
÷ знак деления Деление чисел (целые, десятичные дроби)
х знак умножения Умножение чисел (целые, десятичные дроби)
корень Извлечение корня из числа. При повторном нажатие на кнопку "корня" производится вычисление корня из результата. Например: корень из 16 = 4; корень из 4 = 2
x 2 возведение в квадрат Возведение числа в квадрат. При повторном нажатие на кнопку "возведение в квадрат" производится возведение в квадрат результата Например: квадрат 2 = 4; квадрат 4 = 16
1 / x дробь Вывод в десятичные дроби. В числителе 1, в знаменателе вводимое число
% процент Получение процента от числа. Для работы необходимо ввести: число из которого будет высчитываться процент, знак (плюс, минус, делить, умножить), сколько процентов в численном виде, кнопка "%"
( открытая скобка Открытая скобка для задания приоритета вычисления. Обязательно наличие закрытой скобки. Пример: (2+3)*2=10
) закрытая скобка Закрытая скобка для задания приоритета вычисления. Обязательно наличие открытой скобки
± плюс минус Меняет знак на противоположный
= равно Выводит результат решения. Также над калькулятором в поле "Решение" выводится промежуточные вычисления и результат.
удаление символа Удаляет последний символ
С сброс Кнопка сброса. Полностью сбрасывает калькулятор в положение "0"

Алгоритм работы онлайн-калькулятора на примерах

Сложение.

Сложение целых натуральных чисел { 5 + 7 = 12 }

Сложение целых натуральных и отрицательных чисел { 5 + (-2) = 3 }

Сложение десятичных дробных чисел { 0,3 + 5,2 = 5,5 }

Вычитание.

Вычитание целых натуральных чисел { 7 - 5 = 2 }

Вычитание целых натуральных и отрицательных чисел { 5 - (-2) = 7 }

Вычитание десятичных дробных чисел { 6,5 - 1,2 = 4,3 }

Умножение.

Произведение целых натуральных чисел { 3 * 7 = 21 }

Произведение целых натуральных и отрицательных чисел { 5 * (-3) = -15 }

Произведение десятичных дробных чисел { 0,5 * 0,6 = 0,3 }

Деление.

Деление целых натуральных чисел { 27 / 3 = 9 }

Деление целых натуральных и отрицательных чисел { 15 / (-3) = -5 }

Деление десятичных дробных чисел { 6,2 / 2 = 3,1 }

Извлечение корня из числа.

Извлечение корня из целого числа { корень(9) = 3 }

Извлечение корня из десятичных дробей { корень(2,5) = 1,58 }

Извлечение корня из суммы чисел { корень(56 + 25) = 9 }

Извлечение корня из разницы чисел { корень (32 – 7) = 5 }

Возведение числа в квадрат.

Возведение в квадрат целого числа { (3) 2 = 9 }

Возведение в квадрат десятичных дробей { (2,2) 2 = 4,84 }

Перевод в десятичные дроби.

Вычисление процентов от числа

Увеличить на 15% число 230 { 230 + 230 * 0,15 = 264,5 }

Уменьшить на 35% число 510 { 510 – 510 * 0,35 =331,5 }

18% от числа 140 это { 140 * 0,18 = 25,2 }

Столбиком? Как дома самостоятельно отработать навык деления в столбик, если в школе ребенок что-то не усвоил? Делить столбиком учат во 2-3 классе, для родителей, конечно, это пройденный этап, но при желании можно вспомнить правильную запись и объяснить доступно своему школьнику то, что понадобится ему в жизни.

xvatit.com

Что должен знать ребенок 2-3 класса, чтобы научиться делить в столбик?

Как правильно объяснить ребенку 2-3 класса деление столбиком, чтобы в дальнейшем у него не было проблем? Для начала, проверим, нет ли пробелов в знаниях. Убедитесь, что:

  • ребенок свободно выполняет операции сложения и вычитания;
  • знает разряды чисел;
  • знает назубок .

Как объяснить ребенку смысл действия «деление»?

  • Ребенку нужно объяснить все на наглядном примере.

Попросите разделить что-либо между членами семьи или друзьями. Например, конфеты, кусочки торта и т.п. Важно, чтобы ребенок понял суть — разделить нужно поровну, т.е. без остатка. Потренируйтесь на разных примерах.

Допустим, 2 группы спортсменов должны занять места в автобусе. Известно сколько спортсменов в каждой группе и сколько всего мест в автобусе. Нужно узнать, сколько билетов нужно купить одной и второй группе. Или 24 тетради нужно раздать 12 ученикам, сколько достанется каждому.

  • Когда ребенок усвоит суть принципа деления, покажите математическую запись этой операции, назовите компоненты.
  • Объясните, что деление – это операция противоположная умножению, умножение наизнанку.

Удобнопоказать взаимосвязь деления и умножения на примере таблицы.

Например, 3 умножить на 4 равно 12.
3 — это первый множитель;
4 — второй множитель;
12 — произведение (результат умножения).

Если 12 (произведение) разделить на 3 (первый множитель), получим 4 (второй множитель).

Компоненты при делении называются иначе:

12 — делимое;
3 — делитель;
4 — частное (результат деления).

Как объяснить ребенку деление двузначного числа на однозначное не в столбик?

Нам, взрослым, проще «по старинке» записать «уголком» — и дело с концом. НО! Дети еще не проходили деление в столбик, что делать? Как научить ребенка делить двузначное число на однозначное не используя запись столбиком?

Возьмем для примера 72:3.

Все просто! Раскладываем 72 на такие числа, которые легко устно разделить на 3:
72=30+30+12.

Все сразу стало наглядно: 30 мы можем разделить на 3, и 12 ребенок легко разделит на 3.
Останется только сложить результаты, т.е. 72:3=10 (получили, когда 30 разделили на 3) + 10 (30 разделили на 3) + 4 (12 разделили на 3).

72:3=24
Мы не использовали деление в столбик, но ребенку был понятен ход рассуждений, и он выполнил вычисления без труда.

После простых примеров можно переходить к изучению деления в столбик, учить ребенка правильно записывать примеры «уголком». Для начала используйте только примеры на деление без остатка.

Как объяснить ребенку деление в столбик: алгоритм решения

Большие числа сложно делить в уме, проще использовать запись деления столбиком. Чтобы научить ребенка правильно выполнять вычисления, действуйте по алгоритму:

  • Определить, где в примере делимое и делитель. Попросите ребенка назвать числа (что на что мы будем делить).

213:3
213 — делимое
3 — делитель

  • Записать делимое — «уголок» — делитель.

  • Определить, какую часть делимого мы можем использоваться, чтобы разделить на заданное число.

Рассуждаем так: 2 не делится на 3, значит — берем 21.

  • Определить, сколько раз делитель «помещается» в выбранной части.

21 разделить на 3 — берем по 7.

  • Умножить делитель на выбранное число, результат записать под «уголком».

7 умножить на 3 — получаем 21. Записываем.

  • Найти разницу (остаток).

На этом этапе рассуждений научите ребенка проверять себя. Важно, чтобы он понял, что результат вычитания ВСЕГДА должен быть меньше делителя. Если вышло не так, нужно увеличить выбранное число и выполнить действие еще раз.

  • Повторить действия, пока в остатке не окажется 0.

Как правильно рассуждать, чтобы научить ребенка 2-3 класса делить столбиком

Как объяснить ребенку деление 204:12=?
1. Записываем столбиком.
204 — делимое, 12 — делитель.

2. 2 не делится на 12, значит, берем 20.
3. Чтобы разделить 20 на 12 берем по 1. Записываем 1 под «уголком».
4. 1 умножить на 12 получим 12. Записываем под 20.
5. 20 минус 12 получим 8.
Проверяем себя. 8 меньше 12 (делителя)? Ок, все верно, идем дальше.

6. Рядом с 8 пишем 4. 84 разделить на 12. На сколько нужно умножить 12, чтобы получить 84?
Сразу сложно сказать, попробуем действовать методом подбора.
Возьмем, например, по 8, но пока не записываем. Считаем устно: 8 умножить на 12 получится 96. А у нас 84! Не подходит.
Пробуем поменьше… Например, возьмем по 6. Проверяем себя устно: 6 умножить на 12 равно 72. 84-72=12. Мы получили такое же число, как наш делитель, а должно быть или ноль, или меньше 12. Значит, оптимальная цифра 7!

7. Записываем 7 под «уголок» и выполняем вычисления. 7 умножить на 12 получим 84.
8. Записываем результат в столбик: 84 минус 84 равно ноль. Ура! Мы решили правильно!

Итак, вы научили ребенка делить столбиком, осталось теперь отработать этот навык, довести его до автоматизма.

Почему детям сложно научиться делить в столбик?

Помните, что проблемы с математикой возникают от неумения быстро делать простые арифметические действия. В начальной школе нужно отработать и довести до автоматизма сложение и вычитание, выучить «от корки до корки» таблицу умножения. Все! Остальное — дело техники, а она нарабатывается с практикой.

Будьте терпеливы, не ленитесь лишний раз объяснить ребенку то, что он не усвоил на уроке, нудно, но дотошно разобраться в алгоритме рассуждений и проговорить каждую промежуточную операцию прежде, чем озвучить готовый ответ. Дайте дополнительные примеры на отработку навыков, поиграйте в математические игры — это даст свои плоды и вы увидите результаты и порадуетесь успехам чада очень скоро. Обязательно покажите, где и как можно применить полученные знания в повседневной жизни.

Уважаемые читатели! Расскажите, как вы учите ваших детей делить в столбик, с какими сложностями приходилось сталкиваться и какими способами вы их преодолели.

Удобно проводить особым методом, который получил название вычитание столбиком или вычитание в столбик . Этот способ вычитания оправдывает свое название, так как уменьшаемое, вычитаемое и разность записываются в столбик. Промежуточные вычисления также проводятся в столбиках, соответствующих разрядам чисел.

Удобство вычитания натуральных чисел столбиком заключается в простоте вычислений. Вычисления сводятся к использованию таблицы сложения и применению свойств вычитания.

Давайте разберемся, как выполняется вычитание столбиком. Процесс вычитания будем рассматривать вместе с решением примеров. Так будет понятнее.

Навигация по странице.

Что необходимо знать для вычитания столбиком?

Для вычитания натуральных чисел столбиком необходимо знать, во-первых, как выполняется вычитание с помощью таблицы сложения .

Наконец, не помешает повторить определение разряда натуральных чисел .

Вычитание столбиком на примерах.

Начнем с записи. Сначала записывается уменьшаемое. Под уменьшаемым располагается вычитаемое. Причем делается это так, что цифры оказываются одна под другой, начиная справа. Слева от записанных чисел ставится знак минус, а внизу проводится горизонтальная линия, под которой будет записан результат после проведения необходимых действий.

Приведем несколько примеров правильных записей при вычитании столбиком. Запишем в столбик разность 56−9 , разность 3 004−1 670 , а так же 203 604 500−56 777 .

Итак, с записью разобрались.

Переходим к описанию процесса вычитания столбиком. Его суть заключается в последовательном вычитании значений соответствующих разрядов. Сначала вычитаются значения разряда единиц, далее – значения разряда десятков, далее – значения разряда сотен и т.д. Результаты записываются под горизонтальной линией на соответствующих местах. Число, которое образуется под линией после завершения процесса, является искомым результатом вычитания двух исходных натуральных чисел.

Представим схему, иллюстрирующую процесс вычитания столбиком натуральных чисел.

Приведенная схема дает общую картину вычитания натуральных чисел столбиком, однако она не отражает всех тонкостей. С этими тонкостями разберемся при решении примеров. Начнем с самых простых случаев, а дальше будем постепенно продвигаться к более сложным случаям, пока не разберемся со всеми нюансами, которые могут встретиться при вычитании столбиком.

Пример.

Для начала вычтем столбиком из числа 74 805 число 24 003 .

Решение.

Запишем эти числа так, как этого требует метод вычитания столбиком:

Начинаем с вычитания значений разрядов единиц, то есть, вычитаем из числа 5 число 3 . Из таблицы сложения имеем 5−3=2 . Записываем полученные результат под горизонтальную черту в этом же столбике, в котором находятся числа 5 и 3 :

Теперь вычитаем значения разряда десятков (в нашем примере они равны нулю). Имеем 0−0=0 (это свойство вычитания мы упоминали в предыдущем пункте). Записываем полученный нуль под линию в том же столбике:

Идем дальше. Вычитаем значения разряда сотен: 8−0=8 (по свойству вычитания, озвученному в предыдущем пункте). Теперь наша запись примет следующий вид:

Переходим к вычитанию значений разряда тысяч: 4−4=0 (это свойств вычитания равных натуральных чисел). Имеем:

Осталось вычесть значения разряда десятков тысяч: 7−2=5 . Записываем полученное число под черту на нужное место:

На этом вычитание столбиком завершено. Число 50 802 , которое получилось внизу, является результатом вычитания исходных натуральных чисел 74 805 и 24 003 .

Рассмотрим следующий пример.

Пример.

Отнимем столбиком от числа 5 777 число 5 751 .

Решение.

Делаем все так же, как в предыдущем примере – вычитаем значения соответствующих разрядов. После завершения всех шагов запись примет следующий вид:

Под чертой получили число, в записи которого слева находятся цифры 0 . Если эти цифры 0 отбросить, то получим результат вычитания исходных натуральных чисел. В нашем случае отбрасываем две цифры 0 , получившиеся слева. Имеем: разность 5 777−5 751 равна 26 .

До этого момента мы вычитали натуральные числа, записи которых состоят из одинакового количества знаков. Сейчас на примере разберемся, как вычитаются столбиком натуральные числа, когда в записи уменьшаемого больше знаков, чем в записи вычитаемого.

Пример.

Вычтем из числа 502 864 число 2 330 .

Решение.

Записываем уменьшаемое и вычитаемое в столбик:

По очереди вычитаем значения разряда единиц: 4−0=4 ; далее – десятков: 6−3=3 ; далее – сотен: 8−3=5 ; далее – тысяч: 2−2=0 . Получаем:

Теперь, чтобы завершить вычитание столбиком, нам еще нужно вычесть значения разряда десятков тысяч, а дальше – значения разряда сотен тысяч. Но из значений этих разрядов (в нашем примере из чисел 0 и 5 ) нам вычитать нечего (так как вычитаемое число 2 330 не имеет цифр в этих разрядах). Как же быть? Очень просто – значения этих разрядов просто переписываются под горизонтальную линию:

На этом вычитание столбиком натуральных чисел 502 864 и 2 330 завершено. Разность равна 500 534 .

Осталось рассмотреть случаи, когда на некотором шаге вычитания столбиком значение разряда уменьшаемого числа меньше, чем значение соответствующего разряда вычитаемого. В этих случаях приходится «занимать» из старших разрядов. Давайте разберемся с этим на примерах.

Пример.

Вычтем столбиком из числа 534 число 71 .

Решение.

На первом шаге вычитаем из 4 число 1 , получаем 3 . Имеем:

На следующем шаге нам нужно вычитать значения разряда десятков, то есть, из числа 3 нужно вычесть число 7 . Так как 3<7 , то мы не можем выполнить вычитание этих натуральных чисел (вычитание натуральных чисел определяется лишь когда вычитаемое не больше, чем уменьшаемое). Что же делать? В этом случае мы берем 1 единицу из старшего разряда и «размениваем» ее. В нашем примере «размениваем» 1 сотню на 10 десятков. Чтобы наглядно отразить наши действия, поставим жирную точку над числом в разряде сотен, а над числом в разряде десятков запишем число 10 , используя другой цвет. Запись примет следующий вид:

Прибавляем полученные после «размена» 10 десятков к 3 имеющимся десяткам: 3+10=13 , и из этого числа вычитаем 7 . Имеем 13−7=6 . Это число 6 записываем под горизонтальной чертой на свое место:

Переходим к вычитанию значений разряда сотен. Здесь мы видим над числом 5 точку, которая означает, что из этого числа мы брали единицу «на размен». То есть, сейчас мы имеем не 5 , а 5−1=4 . От числа 4 больше ничего отнимать не нужно (так как исходное вычитаемое число 71 не содержит цифр в разряде сотен). Таким образом, под горизонтальную черту записываем число 4 :

Итак, разность 534−71 равна 463 .

Иногда при вычитании столбиком «разменивать» единицы из старших разрядов приходится несколько раз. В подтверждение этих слов разберем решение следующего примера.

Пример.

Отнимем от натурального числа 1 632 число 947 столбиком.

Решение.

На первом же шаге нам нужно вычесть из числа 2 число 7 . Так как 2<7 ,то сразу приходится «разменивать» 1 десяток на 10 единиц. После этого из суммы 10+2 вычитаем число 7 , получаем (10+2)−7=12−7=5 :

На следующем шаге нам нужно вычесть значения разряда десятков. Мы видим, что над числом 3 стоит точка, то есть, мы имеем не 3 , а 3−1=2 . И от этого числа 2 нам нужно отнять число 4 . Так как 2<4 , то опять приходится прибегать к «размену». Но сейчас уже размениваем 1 сотню на 10 десятков. При этом имеем (10+2)−4=12−4=8 :

Теперь вычитаем значения разряда сотен. Из числа 6 была занята единица на предыдущем шаге, поэтому имеем 6−1=5 . От этого числа нам нужно отнять число 9 . Так как 5<9 , то нам нужно «разменять» 1 тысячу на 10 сотен. Получаем (10+5)−9=15−9=6 :

Остался последний шаг. Из единицы в разряде тысяч мы занимали на предыдущем шаге, поэтому имеем 1−1=0 . От полученного числа нам ничего больше отнимать не нужно. Это число и записываем под горизонтальную черту:

Деление – одна из четырех основных математических операций (сложение , вычитание , умножение). Деление, как и остальные операции важно не только в математике, но и в повседневной жизни. Например, вы целым классом (человек 25) сдадите деньги и купите подарок учительнице, а потратите не все, останется сдача. Так вот сдачу вам надо будет поделить на всех. В работу вступает операция деления, которая поможет вам решить эту задачу.

Деление – интересная операция, в чем мы и убедимся с вами в этой статье!

Деление чисел

Итак, немного теории, а затем практика! Что такое деление? Деление – это разбивание на равные части чего-либо. То есть это может быть пакет конфет, который нужно разбить на равные части. Например, в пакетике 9 конфет, а человек которые хотят их получить – три. Тогда нужно разделить эти 9 конфет на трех человек.

Записывается это так: 9:3, ответом будет цифра 3. То есть деление числа 9 на число 3 показывает количество чисел три содержащихся в числе 9. Обратным действием, проверочным, будет умножение . 3*3=9. Верно? Абсолютно.

Итак, рассмотрим пример 12:6. Для начала обозначим имена каждому компоненту примера. 12 – делимое, то есть. число которое делиться на части. 6 – делитель, это число частей, на которое делится делимое. А результатом будет число, имеющее название «частное».

Поделим 12 на 6, ответом будет число 2. Проверить решение можно умножением: 2*6=12. Получается, что число 6 содержится 2 раза в числе 12.

Деление с остатком

Что же такое деление с остатком? Это то же самое деление, только в результате получается не ровное число, как показано выше.

Например, поделим 17 на 5. Так как, наибольшее число, делящееся на 5 до 17 это 15, то ответом будет 3 и остаток 2, а записывается так: 17:5=3(2).

Например, 22:7. Точно так же определяемся максимально число, делящееся на 7 до 22. Это число 21. Ответом тогда будет: 3 и остаток 1. А записывается: 22:7=3(1).

Деление на 3 и 9

Частным случаем деления будет деление на число 3 и число 9. Если вы хотите узнать, делиться ли число на 3 или 9 без остатка, то вам потребуется:

    Найти сумму цифр делимого.

    Поделить на 3 или 9 (в зависимости от того, что вам нужно).

    Если ответ получается без остатка, то и число поделится без остатка.

Например, число 18. Сумма цифр 1+8 = 9. Сумма цифр делится как на 3, так и на 9. Число 18:9=2, 18:3=6. Поделено без остатка.

Например, число 63. Сумма цифр 6+3 = 9. Делится как на 9, так и на 3. 63:9=7, а 63:3=21.Такие операции проводятся с любым числом, чтобы узнать делится ли оно с остатком на 3 или 9, или нет.

Умножение и деление

Умножение и деление – это противоположные друг другу операции. Умножение можно использовать как проверку деления, а деление – как проверку умножения. Подробнее узнать об умножении и освоить операцию можете в нашей статье про умножение . В которой подробно описано умножение и как правильно выполнять. Там же найдете таблицу умножения и примеры для тренировки.

Приведем пример проверки деления и умножения. Допустим, дан пример 6*4. Ответ: 24. Тогда проверим ответ делением: 24:4=6, 24:6=4. Решено верно. В этом случае проверка производится путем деления ответа на один из множителей.

Или дан пример на деление 56:8. Ответ: 7. Тогда проверкой будет 8*7=56. Верно? Да. В данном случае проверка производится путем умножения ответа на делитель.

Деление 3 класс

В третьем классе только начинают проходить деление. Поэтому третьеклассники решают самые простые задачки:

Задача 1 . Работнику на фабрике дали задание разложить 56 пирожных в 8 упаковок. Сколько пирожных нужно положить в каждую упаковку, чтобы получилось равно количество в каждой?

Задача 2 . На кануне нового года в школе детям на класс, в котором учится 15 человек, выдали 75 конфет. Сколько конфет должен получить каждый ребенок?

Задача 3 . Рома, Саша и Миша собрали с яблони 27 яблок. Сколько каждый получит яблок, если нужно поделить их одинаково?

Задача 4 . Четыре друга купили 58 штук печенья. Но потом поняли, что им не разделить их поровну. Сколько ребятам нужно докупить печенья, чтобы каждый получил по 15 штук?

Деление 4 класс

Деление в четвертом классе – более серьезное, чем в третьем. Все вычисления проводятся методом деления в столбик, а числа, которые участвуют в делении – не маленькие. Что же такое деление в столбик? Ответ можете найти ниже:

Деление в столбик

Что такое деление в столбик? Это метод позволяющий находить ответ на деление больших чисел. Если простые числа как 16 и 4, можно поделить, и ответ понятен – 4. То 512:8 в уме для ребенка не просто. А рассказать о технике решения подобных примеров – наша задача.

Рассмотрим пример, 512:8.

1 шаг . Запишем делимое и делитель следующим образом:

Частное будет записано в итоге под делителем, а расчеты под делимым.

2 шаг . Деление начинаем слева направо. Сначала берем цифру 5:

3 шаг . Цифра 5 меньше цифры 8, а значит поделить не удастся. Поэтому берем еще одну цифру делимого:

Теперь 51 больше 8. Это неполное частное.

4 шаг . Ставим точку под делителем.

5 шаг . После 51 стоит еще цифра 2, а значит в ответе будет еще одно число, то есть. частное – двузначное число. Ставимвторую точку:

6 шаг . Начинаем операцию деления. Наибольшее число, делимое без остатка на 8 до 51 – 48. Поделив 48 на 8,получаем 6. Записываем число 6 вместо первой точки под делителем:

7 шаг . Затем записываем число ровно под числом 51 и ставим знак «-»:

8 шаг . Затем из 51 вычитаем 48 и получаем ответ 3.

* 9 шаг *. Сносим цифру 2 и записываем рядом с цифрой 3:

10 шаг Получившееся число 32 делим на 8 и получаем вторую цифру ответа – 4.

Итак, ответ 64, без остатка. Если бы делили число 513, то в остатке была бы единица.

Деление трехзначных

Деление трехзначных чисел выполняется методом деления в столбик, который был объяснен на примере выше. Пример как раз-таки трехзначного числа.

Деление дробей

Деление дробей не так сложно, как кажется на первый взгляд. Например, (2/3):(1/4). Метод такого деления довольно прост. 2/3 – делимое, 1/4 – делитель. Можно заменить знак деления (:) на умножение (), но для этого нужно поменять местами числитель и знаменатель делителя. То есть получаем: (2/3) (4/1), (2/3)*4, это равно – 8/3 или 2 целые и 2/3.Приведем еще пример, с иллюстрацией для наилучшего понимания. Рассмотрим дроби (4/7):(2/5):

Как и в предыдущем примере, переворачиваем делитель 2/5 и получаем 5/2, заменяя деление на умножение. Получаем тогда (4/7)*(5/2). Производим сокращение и ответ:10/7, затем выносим целую часть: 1 целая и 3/7.

Деление числа на классы

Представим число 148951784296, и поделим его по три цифры: 148 951 784 296. Итак, справа налево: 296 – класс единиц, 784 - класс тысяч, 951 – класс миллионов, 148 – класс миллиардов. В свою очередь, в каждом классе 3 цифры имеют свой разряд. Справа налево: первая цифра – единицы, вторая цифра – десятки, третья – сотни. Например, класс единиц – 296, 6 – единицы, 9 – десятки, 2 – сотни.

Деление натуральных чисел

Деление натуральных чисел – это самое простое деление описанные в данной статье. Оно может быть, как с остатком, так и без остатка. Делителем и делимым могут быть любые не дробные, целые числа.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Деление презентация

Презентация – еще один способ наглядно показать тему деления. Ниже мы найдете ссылку на прекрасную презентацию, в которой хорошо объясняется как делить, что такое деление, что такое делимое, делитель и частное. Время зря не потратите, а свои знания закрепите!

Примеры на деление

Легкий уровень

Средний уровень

Сложный уровень

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение"

Игра «Быстрое сложение» развивает мышление и память. Главная суть игры выбирать цифры, сумма которых равна заданной цифре. В этой игре дана матрица от одного до шестнадцати. Над матрицей написано заданное число, надо выбрать цифры в матрице так, чтобы сумма этих цифр была равна заданной цифре. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Игра "Быстрое сложение перезагрузка"

Игра «Быстрое сложение перезагрузка» развивает мышление, память и внимание. Главная суть игры выбрать правильные слагаемые, сумма которых будет равна заданному числу. В этой игре на экране дается три цифры и дается задание, сложите цифру, на экране указывается какую цифру надо сложить. Вы выбираете из трех цифр нужные цифры и нажимаете их. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

В курс входит 30 уроков с полезными советами и упражнениями для развития детей. В каждом уроке полезный совет, несколько интересных упражнений, задание к уроку и дополнительный бонус в конце: развивающая мини-игра от нашего партнера. Длительность курса: 30 дней. Курс полезно проходить не только детям, но и их родителям.

Супер-память за 30 дней

Запоминайте нужную информацию быстро и надолго. Задумываетесь, как открывать дверь или помыть голову? Уверен, что нет, ведь это часть нашей жизни. Легкие и простые упражнения для тренировки памяти можно сделать частью жизни и выполнять понемногу среди дня. Если съесть суточную норму еды за раз, а можно есть порциями в течение дня.

Секреты фитнеса мозга, тренируем память, внимание, мышление, счет

Мозгу, как и телу нужен фитнес. Физические упражнения укрепляют тело, умственные развивают мозг. 30 дней полезных упражнений и развивающих игр на развитие памяти, концентрации внимания, сообразительности и скорочтения укрепят мозг, превратив его в крепкий орешек.

Деньги и мышление миллионера

Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

С помощью данной математической программы вы можете поделить многочлены столбиком.
Программа деления многочлена на многочлен не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вам нужно или упростить многочлен или умножить многочлены , то для этого у нас есть отдельная программа Упрощение (умножение) многочлена

Первый многочлен (делимое - что делим):

Второй многочлен (делитель - на что делим):

Разделить многочлены

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Деление многочлена на многочлен (двучлен) столбиком (уголком)

В алгебре деление многочленов столбиком (уголком) - алгоритм деления многочлена f(x) на многочлен (двучлен) g(x), степень которого меньше или равна степени многочлена f(x).

Алгоритм деления многочлена на многочлен представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную.

Для любых многочленов \(f(x) \) и \(g(x) \), \(g(x) \neq 0 \), существуют единственные полиномы \(q(x) \) и \(r(x) \), такие что
\(\frac{f(x)}{g(x)} = q(x)+\frac{r(x)}{g(x)} \)
причем \(r(x) \) имеет более низкую степень, чем \(g(x) \).

Целью алгоритма деления многочленов в столбик (уголком) является нахождение частного \(q(x) \) и остатка \(r(x) \) для заданных делимого \(f(x) \) и ненулевого делителя \(g(x) \)

Пример

Разделим один многочлен на другой многочлен (двучлен) столбиком (уголком):
\(\large \frac{x^3-12x^2-42}{x-3} \)

Частное и остаток от деления данных многочленов могут быть найдены в ходе выполнения следующих шагов:
1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой \((x^3/x = x^2) \)

\(x \) \(-3 \)
\(x^2 \)

3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой \((x^3-12x^2+0x-42-(x^3-3x^2)=-9x^2+0x-42) \)

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(x \) \(-3 \)
\(x^2 \)

4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(-9x^2 \) \(+27x \)
\(-27x \) \(-42 \)
\(x \) \(-3 \)
\(x^2 \) \(-9x \)

5. Повторяем шаг 4.

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(-9x^2 \) \(+27x \)
\(-27x \) \(-42 \)
\(-27x \) \(+81 \)
\(-123 \)
\(x \) \(-3 \)
\(x^2 \) \(-9x \) \(-27 \)

6. Конец алгоритма.
Таким образом, многочлен \(q(x)=x^2-9x-27 \) - частное деления многочленов, а \(r(x)=-123 \) - остаток от деления многочленов.

Результат деления многочленов можно записать в виде двух равенств:
\(x^3-12x^2-42 = (x-3)(x^2-9x-27)-123 \)
или
\(\large{\frac{x^3-12x^2-42}{x-3}} = x^2-9x-27 + \large{\frac{-123}{x-3}} \)