В этой статье:
Начали делать не так давно. Этот процесс не является таким уж лёгким, а требует серьезных затрат. Применение такого искусственного кристалла не ограничивается только ювелирным делом, алмазы очень нужны в технике. Например, из них изготавливают специальный режущий инструмент. Для того чтобы понять, что собой представляют искусственные алмазы, нужно для начала разобраться, что такое настоящий алмаз.
Алмаз - самый твердый минерал в мире
Прежде всего, то, что мы видим в ювелирном магазине - это бриллиант. Бриллиант - это алмаз, который прошел специальную предварительную обработку ювелирами. C точки зрения химии, он представляет собой углерод кубической формы и строения кристаллов. Что интересно, углерод в зависимости от того, как построена структура, может выступать в виде многих веществ, которые имеют разные свойства и применение.
Искусственные алмазы
Например, всем известно, что сейчас в мире переходят на нанотехнологии. Нанотехнологиями называют такие технологии, суть которых построена на объектах очень малой величины - тысячных долях микрона. Одними из таких объектов являются нанотрубки. Так вот, наименьшие нанотрубки, а именно, самого маленького диаметра, также являются формой углерода. Дело в том, что один атом вещества может объединяться с пятью другими, что и так представляет собой компактную структуру. Среди атомов, которые обладают такими возможностями, имеет самую маленькую массу, а соответственно и радиус атома.
Если атомы углерода объединяются во что-то похожее на мяч для футбола - это называться фуллеренами. Фуллерены и нанотрубки, а также монослой углерода - графен, за получение которого недавно вручили Нобелевскую премию, в будущем, скорее всего, будут очень широко использоваться в технике. Они интересны своими сверхпрочными свойствами, а также проводимостью, низким сопротивлением и размерами. Наибольшая ценность нанотрубок - выступать как проводниками, так и полупроводниками, в зависимости от того, как ориентированы атомы между собой. За этим будущее электроники.
До сих пор ученые не пришли к однозначному выводу о том, . Основная версия говорит о том, что кристаллы формируются глубоко в Земле (более чем в 200 километрах) под большим давлением и огромной температурой. А потом уже магма их выбрасывает на поверхность. Существует также версия, что алмаз представляет собой внеземную структуру и прилетает на Землю вместе с метеоритами. Еще одна версия тоже говорит о космическом происхождении: якобы бриллианты формируются при падении метеорита, когда создается высокое давление.
Камни очень редкие и красивые. Ценятся они не только за красоту, но и за то, что обладают уникальными свойствами:
- алмаз имеет самую высокую твердость среди минералов;
- температура его плавления доходит до 4000 градусов;
- теплопроводность самая высокая среди всех известных твердых тел;
- он относится к диэлектрикам;
- имеет уникальное преломление света, под действием различных лучей может начать светиться;
- не растворяется в кислоте.
История получения минералов
В 1797 году было открыто, что алмаз состоит из чистого углерода. С тех пор начались попытки повторить процесс в условиях лаборатории. Наиболее успешными стали работы Ханней и Муассана, в 1893 году они нагревали их до температуры 3000 градусов Цельсия с высокой скоростью нагрева и добавлением железа. В отличие от Ханнея, который использовал трубку для нагрева, Муассан использовал электродуговую печь со стержнями углерода, располагавшимися внутри блоков извести.
Расплавленное железо после нагрева быстро охлаждали водой. Все это делали для того, чтобы обеспечить высокое давление. Подобные эксперименты повторялись и в дальнейшем. Например, в 1909 году успеха достиг Крукс и через несколько лет об этом заявил. Однако позже такое заявление было опровергнуто.
Первый официальный искусственный алмаз был создан в 1926 году. Для его создания были объединены все методы, которые перечислены выше. Сейчас этот образец до сих пор хранится в музее в Соединенных Штатах Америки.
Но это еще был не тот образец, который можно было бы поставить на серийное производство. Наибольший вклад в создание и разработку методов получения бриллиантов вложил Сэр Чарльз Алджернон Парсонс - именно он на протяжении 40 лет пытался повторить самые первые опыты Ханнея и Муассана. Он был очень кропотливым и сохранил полученные образцы для дальнейших исследований. Позже заявил, что всё, что было создано до этого, не является искусственным бриллиантом.
В 1941 году к разработке методики получения алмазов присоединяется компания General electrics. У них получилось нагреть углерод до 3000 градусов и получить давление 5 ГПа. Однако им помешала Вторая мировая война, и только через 10 лет они возобновили работы по проекту. Во время этих разработок использовались наковальни из карбида вольфрама в гидравлическом прессе. Однако все условия синтеза были настолько неопределёнными, что эксперименты повторять не удавалось.
В 1954 году был создан первый искусственный алмаз, который годился для коммерческого синтеза. Однако он был очень маленького диаметра, всего доли миллиметра, поэтому не мог быть использован в украшениях, зато хорошо подходил для промышленности. Описание работы по его созданию было опубликовано в самом престижном научном журнале Nature.
С 1953 года компания ASEA - производитель электроники из Швеции - тоже начала заниматься независимым синтезом алмазов. Работа шла, используя громоздкий аппарат, который поддерживал давление на уровне 8,4 ГПа на протяжении часа. Но им тоже удалось получить экземпляры только маленького размера.
В Корее в восьмидесятых годах появился конкурент по созданию алмазов - компания «Ильин Алмаз». Она заполучила коммерческую тайну от General Electric и смогла синтезировать синтетические алмазы в 1988 году. После этого вышел и Китай на рынок с огромным количеством предприятий.
Как сегодня выращивают алмазы?
В промышленном производстве сейчас более широко используется технология выращивания кристаллов при высоких давлениях и температурах, называемая HPHT, а также технологии CVD. Менее употребляемыми методиками считаются синтез монокристаллов алмаза при взрыве и метод получения микронных алмазов из суспензии частиц графита в органических растворителях под действием ультразвука.
Технология HPHT включает в себя получение алмазов при температуре 1500 градусов и давлении 50 атмосфер. Установка, которая представляет собой гидравлический пресс, сжимает специальный контейнер, внутри которого находится металлический расплав и графит. В качестве расплава используется железо, никель кобальт или другие металлы. На подложке размещаются затравки - небольшие кристаллы алмаза. Сквозь камеру проходит ток, который нагревает расплав до нужной температуры. В таком случае металл служит растворителем или катализатором кристаллизации.
Кристаллы выращиваются на заправке в форме алмаза. Процесс выращивания более-менее крупного или нескольких мелких кристаллов длиться в среднем около 12 суток. Сейчас производство искусственных алмазов доходит до выпуска миллиардов каратов в год. В 1970, используя эту технологию, впервые научились добывать камни маленького веса и качества.
С 1960-х годов начали разработку более дешевой технологии получения алмазов CVD, что означает Chemical Vapor deposition, которая представляет себя осаждение из фазы газа.
Синтез проходит при осаждении углерода на подложку в среде из водородного газа, который ионизируется с помощью излучения и высоких температур. При осаждении поликристаллический алмаз (кремний) получает пластины, имеющие ограниченное применение в электронике и оптике.
Скорости роста абсолютно разные, которые могут достигать и 100 микрометров в час. Толщина пластин обычно ограничена 2-3 миллиметрами, поэтому полученные алмазы можно использовать в качестве ювелирных, но не превышающих 1 карата. Возможности этого момента начали популяризоваться в 2000-х и привлекли внимание как стартапов, так и больших корпораций, что дало сильный толчок к развитию метода.
Потенциал HPHT в последнее время был сильно недооценен, и все внимание и ресурсы были сосредоточены на совершенствовании метода химического осаждения. Эта технология, как казалось, была неприменима для выращивания кристаллов большого размера и высокого качества. Но в последнее время технологии совершенствуются и получаются искусственные алмазы такого качества и размера, какими раньше могли быть только натуральные.
Которые чаще всего имеют прозрачные цвета, заключается еще в том, что синтетические обладают легким оттенком. Азот, который рассеивается в структуре решетки во время роста алмаза, поглощает голубой цвет, в результате чего синтетический алмаз приобретает желтоватый оттенок.
Другие заменители бриллиантов
Помимо искусственных бриллиантов, широко используются их заменители, которые вошли в ювелирную промышленность в семидесятых годах прошлого века. Сначала Физический институт Академии Наук получил фианиты, которые представляли собой . Это, так сказать, стекляшка среди алмазов. Позже появились такие , как хрусталь, циркон, белый сапфир. Особенной популярностью пользовались такие камни в изготовлении перстней в викторианском стиле.
Также появился такой заменитель бриллиантов, как нексус, который представляет собой соединения углерода с другими веществами и отличается прочностью и твердостью.
Для изготовления фианитов используется диоксид циркония. Он считается наименее прочными из всех заменителей бриллиантов, а соответственно, и самым дешевым. Муассанит, который синтезируется из карбида кремния и является самым прочным из всех камней, похожих на бриллианты, и обладает такими внешними характеристиками, что его даже сложно отличить от настоящего камня. Отличие всех искусственных камней от натуральных, которое можно заметить невооруженным глазом - это стоимость, для остальных отличий необходимо оборудование и опыт.
Однако иногда синтетические бриллианты по цене не уступают натуральным, потому что огромные затраты расходуются на их производство. Основное отличие искусственного бриллианта от натурального в том, что в натуральных бриллиантах присутствуют неоднородности и включения, которые отсутствуют у искусственно полученных минералов.
Приобрести украшения из синтетического бриллианта можно, и это будет значительная экономия по сравнению с натуральным. Если вы хотите купить украшение максимально недорого, то отдавайте предпочтение фианитам. Их сияние не уступает натуральному бриллианту, но у него немного хуже характеристики прочности и твердости, что влияет на эксплуатационные свойства. Муассанит обладает наиболее ярким блеском, что в некотором роде создает эффект дискотеки. Фианит не обладает таким сиянием, как алмаз искусственный или муассанит, но лучше отбрасывает блики.
Муассаниты практически не поддаются внешнему воздействию, а вот фианиты со временем царапаются и впитывают масло. Кроме того, если за ними не ухаживать, на поверхности камня скапливаются царапины, он становится мутным.
Таким образом, технология получения бриллиантов до сих пор находится в стадии разработки. В отличие от рубинов и сапфиров, получить бриллиант любого размера или качества невозможно, и часто он может быть дороже оригинального, так как затрачивается огромное количество времени и ресурсов.
Искусственный бриллиант в прямом смысле - это ограненный соответствующим образом искусственный алмаз. Считается, что характеристики искусственных бриллиантов не уступают настоящим.
В переносном смысле искусственные бриллианты - это различные заменители драгоценного камня менее ценным, похожим на бриллиант по цвету, переливам, блеску. К таким заменителям природного бриллианта относятся синтетические фианит, муассанит, кристаллы Сваровски и тому подобные вещества. Они используются в ювелирных целях, но не обладают свойствами истинного алмаза.
В некоторых случаях в роли имитации бриллианта выступают натуральные кристаллы, например, камень берилл желтого цвета (если нужно имитировать желтые бриллианты), бесцветный сапфир или другие природные драгоценные камни. Они стоят меньше бриллианта.
Использование имитаций или искусственно выращенных бриллиантов в украшении не считается подделкой, если продавец пишет эту информацию на ценнике.
При этом цена не всегда должна быть ниже - стоимость бриллиантов, созданных человеком, сопоставима с настоящим алмазом.
Краткая история
Первые сообщения о получении искусственно выращенных бриллиантов начали поступать в мировое ученое сообщество уже в конце XIX века, однако в большинстве своем они были ложными.
Полученные кристаллы, в отличие от натуральных, отличались иным химическим составом, не состояли из углерода и не обладали свойствами алмаза, к которым в первую очередь относятся:
- максимальная среди всех известных веществ твердость - 10 по Моосу;
- высокая теплопроводность;
- высокая дисперсия света;
- низкое термическое расширение;
- химическая инертность;
- низкий коэффициент трения;
- высокое электрическое сопротивление.
Упрощенно говоря, алмаз - самый твердый в мире диэлектрик (вещество, не пропускающее ток), который очень быстро нагревается, но практически не расширяется от нагрева.
Природный алмаз - инертное вещество, не вступающее в реакцию со щелочами и кислотами в обычных условиях.
При высокой температуре алмаз вспыхивает и горит, превращаясь в графитовую сажу.
По иронии природы алмаз состоит из углерода - того же вещества, что и графит, твердость которого равна 1 по Моосу. Свойства алмаза обусловлены иной атомарной структурой.
Впервые настоящие алмазы научились получать в Швеции в 1953 году. Изобретенные тогда технологии алмазного синтеза базировались на воспроизведении природных условий образования этого минерала. Понадобилось воссоздать высокое давление и температуру - 60 тысяч атмосфер и 1,5 тысячи градусов по Цельсию, чтобы получить идеальную структуру алмаза.
Технологии производства
На данный момент истинные искусственные алмазы, огранка которых превращает их в бриллианты, выращивают двумя основными методами. Они называются HPHT и CVD-методы соответственно.
Первое название - английская аббревиатура, в переводе значит «высокое давление, высокая температура». Этот способ можно применять для получения кристаллов правильной кубической или додекаэдрической формы.
Суть метода: заготовку из графита и специальным образом подобранного легкоплавкого металла помещают в конструкцию из нескольких многотонных прессов, сдавливающих ее со всех сторон и одновременно нагревающих. Металл плавится, в нем растворяется графит, излишки металла удаляются, и при дальнейшем сжатии образуется алмаз.
Недостаток способа в том, что на одной и той же установке можно получать только одинаковые по величине и форме кристаллы.
Метод обработки высокой температурой и давлением используется для промышленной штамповки алмазов.
CVD в переводе расшифровывается как «химическое осаждение из газовой фазы». Смысл явления - в выращивании алмазной пленки на водородно-углеродной заготовке. Здесь требуются значительно меньшие давление и температура.
Методом химического осаждения можно получить как бесцветный алмаз, так и другие цвета, добавляя в газовую камеру включения некоторых металлов.
После окончания процесса результат нуждается в шлифовке и огранке, зато таким способом можно получить даже искусственный черный бриллиант.
Существует ряд более экзотических способов получения синтетических алмазов, например, синтез методом детонации взрывчатки, содержащей углерод, и обработка ультразвуком - ультразвуковая кавитация.
Однако такими способами можно изготовить только нано- и микрокристаллы, не достигающие даже одного карата. Они используются в промышленности, например, для изготовления режущего инструмента с алмазным напылением.
Только 2–3 % всех алмазов, полученных на фабрике или в лаборатории, гранятся как бриллианты и идут на украшения. Основную массу синтетических кристаллов забирает промышленность.
Тем не менее возникла ювелирная мода на драгоценности именно с рукотворными бриллиантами. Она получила распространение в основном среди последователей Гринписа.
Цвета искусственных кристаллов
Бриллианты, полученные с помощью CVD или HPHT-метода, чаще всего либо бесцветные, либо имеют голубой или желтый оттенок.
Такие цвета получаются путем введения в реакцию бора (голубой) или азота (желтый оттенок). Вырастить абсолютно бесцветный бриллиант высокой чистоты сложно из-за большого количества азота в атмосфере. Рекорд был поставлен в 2015 году, и вес полученного кристалла составил чуть более 10 карат.
Искусственный бриллиант называется выращенным, а не синтетическим, потому что по химическому составу, свойствам и характеристикам он полностью идентичен природным. Методы синтеза подразумевают иную структуру получаемых образцов.
Рынок выращенных бриллиантов функционирует легально.
Постепенно вводится правило - на изделиях с заменителями природного камня, выращенными в искусственных условиях, ставится соответствующая отметка методом лазерной гравировки, которая содержит в себе название фирмы-изготовителя и серийный номер бриллианта. Эту практику уже ввела компания-производитель Gemesis из США.
Отличить искусственный бриллиант от натурального можно при помощи специальных тестеров, просвечивающих камень в ультрафиолетовых, инфракрасных или рентгеновских лучах.
В их спектре обнаруживаются незначительное количество примесей азота или металлов, нехарактерных для творений природы.
Астрологическое значение
Поскольку искусственные бриллианты полностью идентичны природным, их могут носить те же знаки зодиака, которым соответствует природный алмаз. Это камни Огня, и «любят» они в основном людей своей стихии - Стрельцов, Львов и Овнов. Среди них бриллиант, в том числе и искусственный, особенно выделяет Овна.
Противопоказано ношение бриллиантовых украшений антиподам Огня - знакам стихии Воды, особенно Рыбам.
Знак зодиака | Совместимость |
---|---|
Овен | +++ |
Телец | + |
Близнецы | + |
Рак | + |
Лев | + |
Дева | + |
Весы | +++ |
Скорпион | + |
Стрелец | + |
Козерог | + |
Водолей | + |
Рыбы | + |
(«+++» - подходит идеально, «+» - можно носить, «-» - категорически противопоказан)
Заменители бриллианта
В ювелирном деле у «короля драгоценностей» есть несколько подобий природного и синтетического происхождения.
Они применяются легально, и в таком случае соответствующая информация указывается на ценнике, а цена пропорционально снижается. К сожалению, из-за высокой стоимости алмазов и бриллиантов его подобия используются для изготовления фальшивок.
Основные аналоги бриллианта:
- геркмайер - кристалл кварца, от природы похожий на ограненный алмаз, добывается в США;
- рутил природный и синтезированный;
Рутил природного происхождения
- бесцветный сапфир;
- корундолит (разновидность шпинели);
Корундолит, разновидность шпинели
- титанат стронция;
- аллюмоиттриевый гранат;
- горный хрусталь;
- циркон;
- фианит;
- муассанит;
- стразы Сваровски.
Самые дешевые подделки - из стекла, но они встречаются все реже и реже, так как легко опознаются даже ювелиром-любителем.
Самые распространенные
Наибольшую популярность на рынке минералов, точнее всего имитирующих бриллиант, получили фианит и муассанит.
Фианит - стопроцентно синтезированное вещество, в природе не встречающееся.
Это диоксид циркония, редкого металла. Цирконий добывается из камней цирконов, которые называют «младшими братьями алмазов».
Фианит - прозрачный кристалл с показателями дисперсии и преломления света, близкими к показателям бриллианта. Имеет алмазный блеск. Название распространено в России, оно происходит от названия института (ФИАН), где впервые синтезировали это вещество. За рубежом его называют цирконитом. Поэтому часто возникает путаница - продукт химического синтеза фианит путают с металлом цирконием и природным камнем - цирконом, тоже внешне похожим на желтоватый алмаз.
Ювелиры отличают фианит от бриллианта по массе - у цирконита она больше, а также по показателям теплопроводности - она значительно меньше, чем у алмаза. Твердость его ниже алмазной, верхний предел - 8,5 по Моосу.
Муассанит - природный минерал, названный в честь своего первооткрывателя Анри Муассана.
С химической точки зрения это карбид кремния, он же - карборунд. Несмотря на то, что открыт он был как природное вещество, в природе он встречается так же редко, как и алмаз. Но его легко синтезировать.
Серебряные серьги с муассанитом
Синтезированный муассанит часто используется как альтернатива бриллианту или фианиту. Твердость - до 9,25 по Моосу. После огранки он блестит сильнее, чем каждый из этих кристаллов. Его показатели преломления выше, чем у алмаза, но он может иметь двойное лучепреломление (разделение луча, проходящего сквозь кристалл, надвое), чего никогда не бывает у бриллианта.
Его можно отличить от ограненного алмаза по двулучепреломлению, зеленовато-серому блеску черты и более высокой, чем у алмаза, электропроводности. Также он выявляется ультрафиолетовым облучением, при котором муассанит светится оранжево-красным цветом.
Третий широко распространенный аналог бриллианта - это высококачественные стразы, которые получают из свинцового стекла либо акрилового полимера, реже - горного хрусталя.
Наиболее качественные стразы изготавливаются компаниями Swarovski в Австрии и Preciosa в Чехии.
Всем давно известен такой прекрасный камень, как бриллиант. Его история насчитывает более 3,5 миллиарда лет. Существует много версий его происхождения. Он обладает невероятным блеском и прочностью, чем и заслужил такую популярность. Существует искусственный и натуральный бриллиант. Так как последний имеет большую рыночную стоимость, создали искусственный камень. Он немного дешевле, но не менее привлекательный. Искусственный бриллиант - камень, который на сегодняшний день пользуется большим спросом. Из него изготавливают различные украшения, которые имеют непревзойденный вид и способны покорить любого ценителя прекрасного.
Описание
Искусственный бриллиант - это заменитель настоящего. Данного вида камень - более доступный по цене, так как настоящий не каждый может приобрести. В наше время благодаря высокотехническому оборудованию можно изготавливать синтетический камень. Он по внешнему виду мало чем отличается от настоящего. Только ювелиры могут отличить подделку от оригинала. Существует несколько видов искусственного камня - это так называемый синтетический минерал и заменитель алмазов. Долгое время ученые по оригинальной технологии создавали такие камни. И только в далеком 1892 году Анри Муассан придумал совершенно новый метод. Он использовал очень высокие температуры, которым подвергался углерод. Так, благодаря этому методу появился на свет впервые искусственно выращенный бриллиант. На сегодняшний день уже существует несколько подобных методов. Первый способ основан на давлении и высокой температуре, а второй связан с применением газовой среды.
Как выращивают камень?
Выращивают искусственный бриллиант в специальной камере. Алмазный зачаток кладут под пресс, соблюдается специальный температурный режим. Спустя семь дней по такому методу можно увидеть настоящий алмаз. Если качество не устраивает изготовителя, то камень снова по такой же технологии обрабатывают. Благодаря прессу и высокой температуре можно получить аналог довольно высокого качества.
Второй способ основан на применении газовой среды. Алмазное семя помещают в камеру с низким давлением. Испаренный углерод и кислород накладывают на частичку бриллианта слоями. Выращивание этими способами позволяет получать аналоги высокого качества, которые мало чем отличаются от настоящего бриллианта. На создание таких камней уходит всего два дня. Когда-то бриллианты заменяли фианитами, муассанитами. Хрусталь и циркон использовали для колец. Так они выглядели изысканно и утонченно на изделиях.
Общие характеристики искусственного камня
Самый известный искусственный бриллиант - это нексус. Он состоит из химического сращивания с другими соединениями. Стоит отметить, что данный аналог обладает высокой прочностью. Производители дают на них практически пожизненную гарантию.
Фианит - самый популярный искусственный бриллиант, созданный в лаборатории. Изготовлен из оксида и циркония. Он имеет красивые внешние данные, но низкую прочность и, соответственно, ниже цену. Если приобрести фианит, то нужно знать, что он со временем может царапаться и будет выглядеть не так, как при покупке. Свойство данного камня - впитывать масла, и это повредит его характеристики. Поэтому за ним нужно тщательно ухаживать.
Искусственно выращенный бриллиант называется муассанит. Он по праву считается самым красивым камнем. Он переливается на солнце и обладает неимоверным блеском. Благодаря ему он и приобрел такую популярность. Соответственно, и по цене он существенно отличается от других бриллиантов, так как он еще и обладатель высокой прочности. Простому человеку не отличить его от настоящего камня. Многие искусственные минералы могут стоить как настоящие. Это касается особенно белых, прозрачных камней, которые с трудом можно отличить от аналога. Следует отметить, что искусственные камни безупречны. Они не имеют совершенно никаких вкраплений и дефектов. Они имеют 100% прозрачность, поскольку выращены искусственно. При этом натуральные камни в природе не бывают идеальными, очень редко когда камень прозрачный на 100%. Искусственные стоят дороже, чем заменители. Поэтому те, кто желает сэкономить на изделии, могут приобрести украшения с заменителем.
Название искусственного бриллианта - муассанит. Такой минерал можно отличить от настоящего камня своим блеском, это его и выдает. Настоящий лишен подобного качества. Конечно, лучше покупать прозрачный искусственный бриллиант. Но если хотите сэкономить, можно приобрести цветные изделия. На сегодняшний день существует огромный выбор различный видов камней, на любой вкус и карман.
Кому подходит камень? Магические свойства
Энергетика бриллианта очень сильная, как и его магические свойства. Носить его желательно людям с сильным характером и духом. Если это фамильная ценность, то он как оберег помогает в различных делах и трудностях. Если это подарок, то очень важно, чтобы женщине его преподнес именно мужчина. Стоит отметить, что одинокой даме не рекомендуется носить данного вида камень. Он может приносить удачу только счастливым людям, супружескую пару он способен оберегать от предательства и обмана, сохранит их любовь на долгие годы.
Астрологи уверены, что бриллиант занимает первое место в зодиакальном калейдоскопе. Он хорошо подходит знакам огненной силы. Также он способен поддерживать равновесие и хорошее настроение. Не стоит его носить таким знакам зодиака: Близнецам, Весам, и Водолеям. Для них он будет действовать противоположно и приносить в их жизнь тоску и уныние.
Лечебные свойства
Также есть версия, что бриллиант обладает лечебными свойствами: укрепляет иммунитет, понижает температуру, утоляет головную боль, борется с бессонницей. Хорошо влияет на нервную систему, может излечить психические заболевания, маразм, склероз. Благотворно влияет на здоровье женщины. Бытует мнение, что зеленый камень помогает женщине забеременеть, облегчат период вынашивания малыша и процесс родов.
Изделия из искусственных камней
Кольцо с искусственным бриллиантом - достаточно красивое украшение. Например, изделие делают с муассанитом. Идеально чистый прозрачный самоцвет позволяет создавать настоящие ювелирные шедевры, от которых трудно отвести глаза. Оптические параметры камня делают его неимоверно сверкающим, способным ослепить своей красотой. Камни в кольцах всегда достаточно большие и прозрачные, не имеющие зрительного отличия от натуральных.
Искусственный бриллиант часто используют для изготовления обручальных колец. Такие изделия являются лидерами продаж. Данного вида камни идеально подходят для ежедневного ношения. Также они будут ярким напоминанием о самом важном и незабываемым дне в жизни. Ухаживать за таким кольцом очень просто. Его периодически нужно мыть с мылом в теплой воде и протирать нашатырным спиртом.
Серьги с искусственным бриллиантом, подвески, браслеты могут иметь один камень или множество маленьких. Все они обладают разными формами, все зависит от фантазии ювелира. Можно заказывать изделия по индивидуальному дизайну. Возможно, вы хотите одинаковые изделия с вашей второй половинкой или напоминание о каком-то важном дне, значимой для вас даты, события.
Браслеты же с муассанитом выглядят особенно роскошно. Ведь в одном изделии такое множество роскошных камней! Конечно, и цена его существенно отличается от других изделий. Но бывают браслеты просто из золота и с подвеской с одним камнем, что также оригинально смотрится. Цена искусственного бриллианта иногда немного дешевле настоящего, все зависит от того, какой он формы и цвета. Примерно 50 - 100 долларов за карат.
Свойства искусственного камня
У данного камня совершенно нет дефектов, он кристально чистый, достаточно твердый, имеет высокую оптическую дисперсию, а также обладает высокой теплопроводностью. Последнее довольно важно для технической примеси. Все остальные характеристики зависят от условий, в которых он был создан.
Кристаллическая структура камня
Алмаз может быть одним большим камнем. А может и иметь множество сросшихся кристалликов. Большие камни широко применяются на ювелирных украшениях и пользуются большим спросом. Поликристаллические алмазы, сделанные из множества мелких зерен, хорошо видны и рассеиваются при солнечном свете, их используют в промышленности как режущий предмет.
Твердость бриллианта
Синтетические бриллианты имеют самую высокую твердость. Слово "твердость" подразумевает под собой сопротивление вдавливанию. Она напрямую зависит от чистоты, наличия дефектов в кристаллической решетке и ее ориентации. Твердость нанокристаллических алмазов может быть 30-70%.
Примеси и включения
Каждый алмаз имеет какие-то примеси из атомов углерода. Они обнаруживаются в достаточном количестве, чтобы определить их аналитическим методом.
Примесей обычно пытаются избегать, но и бывает, что их намеренно вводят. Это делается, дабы изменить свойства алмаза. Когда камни выращиваются в жидкой среде из металла, то это приводит к формированию примесей природных металлов.
Как отличить?
Многие задаются вопросом о том, как отличить искусственный бриллиант от настоящего. Существует несколько вариантов. Искусственный камень может реагировать на магнит, он идеально прозрачный, под микроскопом можно увидеть зернистость, на солнце он не сильно блестит. Если положить его на лист белой бумаги, то вдоль рудниста будет видно белую полосу. Но всегда лучше обратиться к специалисту. Так, невооруженным взглядом, сложно отличить подлинность этих камней.
Небольшое заключение
Теперь вы знаете, что представляет собой искусственный бриллиант, как его выращивают. Кроме этого, мы рассмотрели свойства данного камня. Надеемся, что эта информация была вам не только интересна, но и полезна.
На сегодняшний день существует множество различных технологий получения кристаллов алмаза , для самых разнообразных целей применения, различной величины, окраски и прочности.
Алмаз есть не что иное, как чистый углерод с особой кристаллической решеткой.
Другим представителем чистого углерода на Земле является древесный уголь, графит.
Характеристика углерода:
Атомный вес углерода 12.011;
Порядковый номер в периодической системе Менделеева 6;
Количество электронов 6;
основная валентность 4;
При нормальном атмосферном давлении в жидкость не переходит;
При нагревании при нормальном давлении до температуры 3670 0 С, углерод;
переходит в газ, минуя жидкое состояние.
Характеристика алмаза:
Плотность 3.5 гр. см 2 ;
Преломление света 2,42 (Стекло 1, 8);
Твердость 2 000 000 усл. ед. (Сталь 30 000, стекло 40 000 относительно талька у которого твердость =1);
Температура перехода в графит в открытом воздухе - 1200 0 С;
Температура возгорания в среде чистого кислорода 740 0 С;
Единицы измерения алмазов - карат. Один карат равен 0.2 грамма. Алмаз, размерами 1 x 1 см = 17,5 каратов;
В алмазе каждый атом углерода соединен с 4 другими атомами углерода и расстояние между ними строго одинаково = 1,54 ангстрем. Расположены атомы углерода в алмазе по углам правильного тетраэдра атомной кристаллической решетки.
Температура испарения углерода составляет 3670 0 С (диаграмма 1) критическая точка (Z) (температура 3670 0 С. давление -120 атм.) называется первой точкой тройного состояния.
В этой точке возможны переходы углерода в твердое, газообразное или жидкое состояние.
При повышении давления и температуры, получаем вторую тройную точку (D), в которой возможны состояние углерода в виде кристаллов (алмаз ), в виде жидкости и аморфном состоянии (графит).
Наилучший результат получения алмазов при переходе из жидкого состояния углерода в кристаллическое - снижение температуры, но по возможности, оставляя очень высокое давление. Огромное значение в технологии производства алмазов играют временные характеристики процесса.
Как было ранее отмечено, углерода в жидком состоянии при нормальных условиях (760 мм рт. столба и 20 0 С) не существует. Углерод в жидком состоянии возможен и существует только при давлении свыше 120 атм. и 3740 0 С. (диаграмма 1 ).
Из физических свойств алмаза следует отметить температуру возгорания в среде кислорода которая равна 670 0 С, в основном алмаз сгорает без остатка.
При нагревании алмаза свыше 1200 0 С без воздуха начинается процесс графитизации алмаза , это и происходит при неправильной технологии процесса производства алмазов .
Способы получения искусственных кристаллов алмаза
Первым способом получения искусственных алмазов является метод приближенный к естественному возникновению природных алмазов , это сочетание очень высокого давления и высокой температуры.
Первый способ самый надежный, но и самый технологически сложный
Ниже приводится одна из лабораторных установок по получению кристаллов алмаза максимально приближенной к предполагаемой природной схеме возникновения алмазов в земной толще - мощное давление, высокая температура.
Приложение 1.
Лабораторная установка по получению искусственных алмазов представляет собой пресс высокого давления. В корпус пресса вставляется рабочий цилиндр.
В этом цилиндре предусмотрены сверления для циркуляции хладагента, и отверстия для подачи воды под давлением. В этот корпус вставляется камера, выполненная из карбида тантала в которой размещают заготовку - графит который должен превратится в алмаз .
Предусмотрен подвод медных шин для подачи электрического тока к рабочей камере.
Технология получения алмаза происходит в несколько этапов.
Вначале, после установки цилиндра в пресс высокого давления, подается вода и происходит процесс предварительного сжатия графита давлением воды, примерно до 2-3 тысячи атмосфер. Вторым этапом подается хладоагент и замораживается вода до температуры минус 12 градусов Цельсия.
При этом происходит дополнительное сжатие графита до 20 тысяч атмосфер за счет расширения льда.
На следующем этапе подается мощный импульс электрического тока продолжительностью 0.3 секунды.
На заключительном этапе размораживают лед и вынимают алмазы .
Полученные подобным образом алмазы в основном грязного цвета, имеют пористую структуру, форма кристаллов тетраэдрическая.
В большинстве своем прочнее естественных алмазов и в основном служат для технических целей.
Второй способ
Вторым способом, возможно технологически простым, но сложным по применяемой аппаратуре является способ наращивания кристаллов алмаза в среде метана (СН 4).
При этом методе кристалл алмаза нагревают до температуры 1111 0 С. и обдувают метаном. Давление в рабочей камере может быть небольшим, порядка 0,1 технической атмосферы. Это давление в основном служит для препятствия проникновения в камеру атмосферного кислорода.
Необходимо помнить, что начиная с 1200 0 С алмаз начинает свой переход в состояние графита (без доступа кмслорода).
Процесс наращивания кристалла алмаза происходит на раскаленной поверхности алмаза путем добавления атомов углерода в существующую кристаллическую решетку затравочного кристалла алмаза. Количество выделенного углерода (алмаза) 0.2 % от поверхности затравочного кристалла за один час.
Форма кристаллов получаемая подобным способом кубическая, в отличии от природной тетраэдрической, цвет черный, прочность сопоставима с естественными алмазами. По своей сути это чистый карбид, но называется алмазом в связи с очень высокой твердостью полученных кристаллов, и в связи с тем, что в качестве затравочного кристалла используют настоящие алмазы.
Третьим способом получения алмазов является метод взрыва
При этом способе получают очень мелкую алмазную пыль для производства заточных камней, абразивов. Применяют или взрыв «обычного» взрывчатого вещества, или взрыв проволоки большим импульсом тока.
Для получения плотной детонационной волны необходима мембрана которая рвется со скоростью звука в том металле из которого изготовлена мембрана (для железа это - 5000 м/сек.).
«Подогретый» графит, находящийся на так называемой "сковородке" в момент прохождения детонационной волны превращается в кристаллы алмаза .
Этот способ дает выход продукции намного больше в процентном отношении от количества графита, чем способ высокого давления.
Кристаллы получаются бесцветные, чистейшей воды, прозрачные, но очень мелкие (30 - 50 мкрн.). Форма кристаллов тетраэдрическая прочность сопоставима с природными алмазами .
Сущность данного способа получения алмазов , методом взрыва, заключается в том, что при подрыве взрывчатого вещества в замкнутом пространстве, детонационная волна при ударе с препятствием на пограничном слое, ударная волна - препятствие, создает одновременно и высокое давление и высокую температуру. Давление может достигать свыше 300 000 атм, температура десятки тысяч градусов. К сожалению (или к счастью) все это по времени укладывается в миллионные доли секунды и размеры (толщина) детонационной волны не превышает 10-30 микрон.
В момент разрыва мембраны ударная волна приобретает «плотность» и своего рода такое качество как - гомогенность.
Некоторые кристаллики алмазов получаемые подобным способом могут иметь в диаметре до 50 мк. Большое значение в данном способе имеет положка на которой расположен подогретый графит и толщина рабочего слоя.
Интересны эксперименты по «вторичному» прессованию полученных алмазов тем же способом взрыва, по принципу порошковой металлургии. В данном случае, в алмазном производстве , можно получить кристаллы различного размера и веса из алмазного порошка. В подавляющем большинстве кристаллы мутного цвета. Отмечается хрупкость полученных вторичных кристаллов алмаза . Прочность намного ниже естественных, при обработки возможны «сюрпризы». В данном случае жадность может сгубить идею в самом прямом смысле этого понимания. Толщину графита не рекомендуется превышать 60 микрон .
В четвертом способе получения алмазов применяют катализаторы
Применение катализаторов в алмазном производстве значительно помогает сократить величину давления и температуру. Кристаллы алмаза образуются в разделительном слое между раскаленным графитом и пленкой металла катализатора. При соответствующих подборах технологий можно получать до 50 граммов технических алмазов за один технологический цикл.
Как видим, из диаграммы 3 , приложение 3
Возникающие на границе перехода графит - катализатор, кристаллы алмаза
продолжают свой рост при неизменных условий в рабочей камере до тех пор пока пленка из металла катализатора продолжает соединяться с графитом.
Приложение 3
Рост кристаллов продолжается и в самом легирующем металле за счет проникновения атомов углерода через тонкую пленку металла.
Искусственные алмазы полученные подобным способом представляют собой очень мелкие кристаллы (30 -200 микрон ).
Полученные при низких температурах кристаллы алмазов имеют квадратную форму строения кристаллов, черного цвета, по прочности равны или превосходят естественные.
Кристаллы полученные при высоких температурах и больших давлениях имеют октаэдрическую форму, цвет различен - желтый, синий, зеленый, белый, прозрачные и непрозрачные кристаллы. По прочности равны или превосходят естественные алмазы. Влияние катализаторов на цвет очевидно. Примесь никеля в кристаллах алмаза придает алмазу зеленоватые тона, присадки бериллия придают алмазам синие тона расцветки.
Следует отметить, что по твердости нет в мире элемента тверже алмаза , хотя по другим свойствам он может уступать некоторым искусственным элементам. В таблице приведены элементы которые могут дать более полное представление о некоторых свойствах алмаза в сравнении c другими земными элементами.
Алмаз, так же как и графит, по своему химическому составу представляет собой чистый углерод. Они являются полиморфными модификациями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток.
Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием техники, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовления тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. Б последние годы все больше привлекают внимание другие исключительные свойства алмаза: его.электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации.
Плотность алмаза 3,513 г/см 3 , микротвердость 100,6 ГПа, модуль упругости 825 ГПа, удельное электросопротивление 10 12 - 10 14 Ом-см. Кроме углерода в кристалле алмаза всегда присутствует некоторое количество примесей, составляющих не более десятых долей процента. Основные химические элементы - примеси в алмазе: азот, кислород, водород, Fe, Ti, Mn, Si,Al.
Как известно, основные факторы, способствующие образованию алмазов - высокие давления и температура, которые имеют место в земных недрах на большой глубине.
Искусственные алмазы начали получать в целом ряде стран в середине 50-х годов XX века. Внедрение синтетических алмазов избавило от необходимости дробить большую часть природных алмазов для изготовления порошков, паст и абразивного инструмента. Выпускаются синтетические алмазы марок АСО, АСР, АСВ, АСК, АСС, САМ, АСБ и АСПК, а также микропорошки на основе синтетических алмазов АСМ и АСН размером от 1 до 630 нм.
Применяются синтетические алмазы главным образом для изготовления различных видов абразивного, лезвийного и бурового инструмента. Важнейшими областями применения алмазных инструментов являются обработка инструментов и деталей машин из металлокерамических твердых сплавов, бурение геологических и эксплуатационных скважин в твердых и абразивных породах, обработка изделий из гранита, мрамора и др. Наиболее широко порошкообразные синтетические алмазы применяются для изготовления шлифовальных кругов, предназначенных для доводки и заточки твердосплавного металлорежущего инструмента.
В настоящее время известны три метода синтеза алмазов:
в области термодинамической стабильности алмаза воздействием на исходный углеродсодержащий материал высоким статическим давлением и температурой в.течение времени, измеряемого по крайней мере несколькими секундами; .
в области термодинамической стабильности алмаза воздействием на исходный углеродсодержащий материал высоким динамическим давлением и температурой в течение времени, измеряемого микросекундами и долями микросекунд;
в области термодинамической стабильности графита, осуществляемой при атмосферном и меньшем давлениях и высокой температуре эпитаксиальным наращиванием алмаза на затравках.
Основная масса синтетических алмазов производится во всем мире по первому методу, т.е. при высоких статических давлениях. Отрицательной чертой второго метода является кратковременность действия высоких давлений и температур, из-за чего зародившиеся кристаллы новой фазы лишены возможности длительного роста и образуют поэтому весьма мелкие частицы.
Третий метод получения алмазов требует очень точного соблюдения условий проведения процесса. В противном случае на поверхности затравочных кристаллов будет образовываться как алмаз, так и графит, а затем графит покроет всю поверхность, и рост алмазной фазы прекратится.
Рациональное сочетание трех условий, необходимых для синтеза алмазов (температуры, давления и наличия определенной среды) лежит в основе методов производства синтетических алмазов при высоких статических давлениях, используемых во многих странах мира.
Многочисленные исследования отечественных и зарубежных ученых в области синтеза алмазов позволили предложить механизм превращения графита в алмаз, который подробно описывается в различных литературных источниках и объясняется перестройкой связи электронной конфигурации sp в sp 3 .
Как уже было сказано выше, для синтеза алмазов используются уг-леродсодержащие материалы: стеклоуглерод, кокс, синтетические смолы и, конечно, графит. Однако следует знать, что при синтезе алмазов исходное сырье обязательно проходит стадию графитации. Углеродсодержащее вещество до термообработки должно быть максимально однородным по химическому составу. Кроме того, распределение областей когерентного рассеяния (ОКР) по размерам должно быть достаточно узким.
Нецелесообразно использовать в качестве исходного углеродсодер-жащего вещества сажу, так как она очень мелкодисперсна. Это затрудняет набивку камер аппаратов высокого давления.
На практике в технологии синтеза алмазов используются определенные марки графита МПГ-6, ГМ-ОЗОСЧ, МГ-ОСЧ и т.д. В этом случае образуются алмазы с высоким выходом и хорошего качества. Качество синтезированных алмазов определяется их размерами и твердостью.
Поскольку синтез алмазов протекает при высоких давлениях и температурах, то необходимо иметь надежные аппараты для твердофазного синтеза, в которых достаточно длительное время можно поддерживать и высокие давления, и температуры. Нужно уметь измерять такие давления и температуры, определять степень их однородности в реакционной зоне.
Синтез алмазов проводится в специальных камерах, изготовленных из высокопрочных материалов. Такими материалами являются твердые сплавы на основе карбида вольфрама и кобальта. Подъем температуры в подобных аппаратах осуществляется пропусканием электрического тока через нагревательное устройство.
Конструкции камер высокого давления, где создаются температуры от 727°С до 2227°С весьма различны. Среди множества аппаратов такого рода рассмотрим кратко три вида наиболее распространенных конструкций: многопуансонный аппарат, аппарат типа «цилиндр - поршень» и аппарат типа «наковальня с лункой».
Представителем первого вида является тетраэдрическая установка схема которой представлена на рис. 1.14. Камера состоит из четырех пуансонов с усеченными трехгранными концами. Торцы этих пуансонов имею: вид равносторонних треугольников и ограничивают тетраэдрический объ
Рис. 1.14. Схема тетраэдрического аппарата высокого давления; а -- схема расположения 4 пуансонов; б - установка в
Сборе, верхний пуансон удален
С помощью четырех гидравлических прессов, симметрично распс ложенных в пространстве, пуансоны двигаются вдоль своей оси, образу рабочий -объем. В него помещается контейнер из рабочего вещества, вь: полненный в виде тетраэдра.
Рабочее вещество - это вещество, посредством которого передаете давление во всех установках, где проводятся высокотемпературные иссж давания при высоких давлениях. Оно должно быть твердым телом с мало сжимаемостью и удовлетворять следующим условиям:
иметь высокую температуру плавления и малую теплопровод ность;
не проводить электрический ток; быть химически инертным;
быть достаточно пластичным, чтобы с его помощью можно бь ло получать более или менее равномерное (квазигидростатическое) давл(ние в определенном объеме.
Нагреватель (чаще всего графитовая трубка) заполняется реакцию] ной шихтой и вкладывается в тетраэдрический контейнер так, чтобы конц нагревателя выходили из противоположных ребер тетраэдра. При сближ-нии пуансонов они сжимают тетраэдрический контейнер. Часть рабоче) вещества вытекает в зазоры между пуансонами, образуя уплотняющие пр< кладки. Электрический ток для создания нужной температуры подводится нагревателю через пуансоны, соприкасающиеся с нагревательным устройством.
В настоящее время для изготовления контейнеров, работающих при высоких давлениях и температурах (10 ГПа и 2700°С), применяют в основном четыре вещества: тальк или стеатит 3MgO-4SiOrH 2 O, пирофиллит Al 2 O 3 -4Si0 2 -H 2 O, литографский камень 95% СаСОз + 5% смеси 8Ю 2 , А1 2 0 3 , Fe 2 0 3 и катлинит - красную кремнистую сцементированную глину, месторождения которой находятся в США. Они несколько различаются между собой по механическим свойствам и по термоустойчивости.
Контейнеры могут изготовляться как из блоков соответствующих минералов, так и прессованием порошков из этих минералов с употреблением различных связок (жидкое стекло, бакелит и др.).
Описанная тетраэдрическая камера требует приложения к ней усилия прессового устройства по четырем осям, что вызывает немалые трудности, поэтому создают камеры, где сжатие осуществляется одним поршнем от какого-либо прессового агрегата. Ввиду этого значительное распространение получили аппараты типа «цилиндр - поршень», так называемые белт-аппараты (belt 1 - пояс). Схема аппарата показана на рис.1.15.
1.15. Схема аппарата типа белт: 1 - - пуансон, 2 - - контейнер
Рис. 1.16. Схема камеры высокого давления с поддерживающими кольцами (наковальня с лункой): 1 -пуансон, 2 - - стальное кольцо, 3 - контейнер, 4 - образец, 5 - зазор
Основными частями его являются два конических пуансона (1) из твердого сплава, на которые в несколько слоев надеты стальные бандажи. Их торцы входят в полый цилиндр из твердого сплава, также упрочненный набором бандажей. Внутрь цилиндра помещается цилиндрический контейнер из рабочего вещества (2), в котором находится нагреватель с реакционной шихтой. Нагревателем является трубка из электропроводящего материала, ось нагревателя совпадает с осью контейнера.
Вся установка помещается в гидравлический пресс. При сдвигании пуансонов рабочее вещество пластически деформируется, часть его затекает в зазоры между цилиндром и пуансоном и надежно запирает камеру сжатия. Благодаря образующимся прокладкам из рабочего вещества пуансоны оказываются электрически изолированными от цилиндра.
Нагрев осуществляется пропусканием электрического тока через нагреватель, соприкасающийся с пуансонами, к которым подсоединяются электроконтакты от источника тока.
В установке типа «белт» возможно получать давления около 20 ГПа и температуры порядка 2700°С и можно иметь большой реакционный объем. Однако детали данной конструкции весьма сложны в изготовлении, и эксплуатация ее требует высокой квалификации персонала. Поэтому в СССР была разработана более простая конструкция типа «наковальни с лункой», которая получила широкое распространение не только в лабораторных исследованиях, но и в промышленности.
На рис. 1.16 представлена схема описываемого аппарата в разрезе. Аппарат включает два одинаковых пуансона из твердого сплава (1), каждый из которых в торце имеет центральное углубление (лунку) в виде сегмента сферы, окруженное поверхностью, обработанной на конус. По боковой поверхности каждый пуансон (1) скреплен стальным кольцом (3). Между торцевыми поверхностями пуансонов помещается контейнер (2), выполненный из соответствующего рабочего вещества. Образец (4) собирается вместе с нагревательным элементом и вставляется в полость контейнера. Цифрой (5) обозначен зазор между обработанными на конус, периферическими участками поверхности пуансонов.
Высокие давление (до 7 ГПа) и температура (до 2200°С) получаются следующим образом.. Образец (углеродсодержащий материал) вместе с нагревательным элементом (4) помещается в контейнер (2), который собранным устанавливается в камеру высокого давления, образованную обращенными друг к другу торцами пуансонов (1). Камера в сборе закладывается в гидравлический пресс. При сближении пуансонов периферическая часть контейнера (2) постепенно деформируется и заполняет зазор (5). Пластическое течение материала контейнера (2) прекращается, когда при возрастании сжимающего усилия пресса достигается необходимая величина давления в камере. Электрическая мощность, необходимая для нагревания образца.(4). подается на, нагреватель через пуансоны (1), для чего один из пуансонов должен быть электрически изолирован от остальных частей аппаратуры.
В данном случае твердосплавная деталь имеет линзообразное углубление и называется «наковальней с лункой» (НЛ), а контейнер напоминает формой чечевицу. Для создания более высоких давлений камера типа НЛ была изменена. На конусной поверхности пуансона были сделаны кольцевые канавки в виде разрезанного по большому диаметру тора (рис. 1.17).
Это не влияет на принцип действия камер, но значительно повышает стойкость твердосплавной детали к разрушению. В таких аппаратах можно достичь давлений в 13 - 14 ГПа. Конструкция получила наименование «наковальня с лункой и тороидом (НЛТ)», а контейнер для нее - «тороид» (рис. 1.18).
Рис. 1.17. Схема камеры высокого ис 1.18. Осевой разрез контейнера давления типа тороид типа тороид
Важным обстоятельством, сильно влияющим на характер протекания синтеза алмазов в камерах высокого давления с твердой средой, является возникновение градиентов температуры и давления в реакционной зоне, что усложняет технологию процесса. Истинная величина температуры может быть определена непосредственно в камере синтеза термопарой. В диапазоне температур до 930°С применяются платино-платинородиевая и для более высоких температур - вольфрам-рениевая термопары.
Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200°С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются: марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, катализаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Mo, Nb с металлами Си, Ag, Аи. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом.
Следует отметить, что в синтетических алмазах, получаемых с помощью катализаторов, всегда наблюдаются различные включения.
Нельзя не сказать о возможности получения алмаза из газовой фазы при низких давлениях, т.е. о так называемом эпитаксиальном синтезе вещества.
Наряду с получением алмаза в условиях, когда он является термодинамически устойчивым веществом (при высоких давлениях), алмазы можнс синтезировать в области его неустойчивости, т.е. при относительно низких давлениях. Для этого проводят термическое разложение углеродсодержа-пщх газообразных веществ, например метана, ацетилена, оксида углерода и др. В реакционный сосуд предварительно вводят кристаллы алмаза. Если имеется грань кристалла алмаза, вблизи которой концентрация атомов углерода в виде пара превышает соответствующую равновесную, то избыток атомов углерода будет осаждаться на этой грани, воспроизводя кристаллическую структуру алмазной решетки. Процесс этот очень медленный. Кроме того, рабочие условия благоприятствуют образованию на поверхности подложки графита, который нужно периодически удалять с нее. Удельная производительность таких установок невелика, и сам процесс пока не нашел промышленного применения.
В области термодинамической устойчивости алмаза его можно получать в виде алмазной пыли из углеродсодержащих веществ во взрывной волне. Этот вариант синтеза следует отнести к методу динамического погружения.